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|. The Tonks-Girardeau gas in disorder

Consider N Bosons on a ring of length L

with hard-core repulsion

N
Hiw=> (Hi.);+9 > 806—x0),
j=1 1<j<k<N
and random one-particle Hamiltonian ~ H,", = —5722 + V(x) on L3([0,L])

with periodic bc.

Tonks-Girardeau limit: g —

Normalized eigenfunctions in the Tonks-Girardeau limit:

1
T VN

# N
W(X1,. .., XN) det (sa,gyL(xﬁ))a .

[T sign(x — x)

1<j<k<N

where (¢ ) are norm. eigenfunctions of Hf¥, with:

m periodic bc (fx = 1) in case N odd,
m anti-periodic bc ( iy = —1) in case N even.

Girardeau '60
Lieb-Liniger '62



One-particle reduced density matrix

For any eigenfunction W the kernel of one-particle reduced density matrix
(0 <yw < N, Tryy = N) takes the form of a determinant:

(X, y) = N/W(X,Xg,...,xN)\lJ(y,XQ,.,.,XN)dx2 L dXy
0

#
@ﬁ’YL(X) o 1 (X)

N
o (y)
—det| "
: Kn(x,y)

@f,\?’,L(}’)
with [Kn(X, Y)]a.s = a8 — 2f[x,y] @f(i"ﬁL(Z)cpﬁ;”L(z)dz forall x <y.

m Only the density coincides with that of non-interacting Fermions:
ou(X) = (X, X) = TN, oV (0

m BEC refers to a macroscopic value of ||y ||oo-
Without disorder (V,, = 0): Lenard '64
Y (X, ¥) ~ |x — y|~1/2 i.e. quasi-condensation:  |lyy|co ~ N'/2



Superfluid density  (aka: stiffness): grand-canonical definition

Ground-state energy shift under twisting the
bc € as one particle moves around the ring:

ps := limsup lz limsup L(EL(N,,0) — EL(N,,0))
6—0 0 L—oo

with E; (N, 0) ground-state energy with bc

W(Xi,..., x4L, ..., xn) =€ W(x,...,x,...,xy) forallj.

The ground-state energy for fixed £40) /

chemical potential p:

EO—
. _ ‘ [ —
Ny == min{N.} N7}, 2(m)

£, (m)
NE =T 1o g (H) £40) ————-—""/

8:0 8:=m

Band structure of the one-particle
operators wa. (cf. Reed/Simon V)

m Without disorder (V, = 0):  ps =m0 TNy =



Effects of disorder

Localization hypothesis on one-particle operator wa (ECLin J C R)

There exist C, ¢ € (0,00) and ¢ € (0,1] such thatforall 1 < n,m < L and all
LeN

E [QLi(n, m; J)] < C exp (_dlSt(;)iémf)

where dist(-, -) denotes the Euclidean distance on the torus and

QE(n,m; J;w) = Z ¢ﬁ(n;w)¢ﬁ(m;w),
s EjﬁeJ

o . 2 \2
with &7 (n; w) := (f,n ‘@LL(X;UJ)’ dx) and I, ;== [n,n+1).

R

+ (49
dx2

m Generically satisfied for random H~ = —(
any J C R which is bounded from above.

) 4 V., (x) in one dimensions for

m Implies dynamical localization.



Immediate consequence of ECL

Given the dynamics of free fermions W(xy,...,xy) = ﬁ det ((pij(XB))Z Bt
and the corresponding one-particle density '

— _ —itH itH,
ot(x) = T, (x,x) = (€™ My e ) (x,x).
(ot agrees with density of the time-evolved Tonks-Girardeau gas!)

Theorem

If the range of Ty at t = 0 falls within a regime J C R of (ECL), then there exists an
A € (0, o0) which is independent of N, L such that

the total number of particles on any subset | C [0, L] changes on average by
order one only:

E %gﬂg ‘ Jeodx~ [ sa()oi

for any pair of subsets | C K C [0, L]:

} <A foralllc[o,L],

5 dist(/, K0)£> '

?gng//m(x)dx] <E {/K Qo(X)dx} + Aexp (_ >




Immediate consequence of ECL

Theorem

If the range of Ty at t = 0 falls within a regime J C R of (ECL), then there
exists an A € (0, co) which is independent of N, L such that

the total number of particles on any subset | C [0, L] changes on
average by order one only:

E |:Stgug ’/lg,(x)dx - //go(X)dX

for any pair of subsets | C K C [0, L]:
: e
£ {sup Q‘(X)dx} <E {/ Qo(X)dX] + Aexp (7M) _
K

teRr Ji A3

} <A foralll C|0,L],

m One facet of many-body localization (MBL) — open problem for g < oo!



Direct observation of Anderson localization of matter-waves in a controlled disorder

Billy, Josse, Zuo, Bernard, Hambrecht, Lugan, Clément, Sanchez-Palencia, Bouyer,
Aspect: Nature 453 (2008) 891-894



Sketch of proof of MBL for free Fermions

By assumption on the range of the initial state, we have 'y, = Uy Ty U; with
U = €™ P,(H.). Consequently,

Do) =Y 0o(x)

xel xel

= |Tr1/Ut*r\uUz —Tr1,l'w|

= |Tr1,Ut*1,chU, —Tr1/cUt*1/ert|
<TG ell + 11 U 1l

Hence:
E{sup||1,cU{‘1/||1} < E ]E|:SUpH1/mUt*1/nH1:| s
teR

In1£0 ter
ImNICH#D

and the right side is bounded by a constant on account of dynamical
localization.



[l. Main Results

Theorem (Absence of ODLRO — Hilbert-Schmidt norm) (Seiringer/W. ’15)

For any many- part/c/e elgenstate WV, which is composed of a selection
one-particle states {cp L}& 1 corresponding to an energy regime J, If
condition (ECL) ho/ds for J, then there exist A € (0, o0) independent of L and
N such that

o 2 dist(n, m)¢
El[1mywlnlz] < Aexp (—5(1 - U)%)

forall1 <nm<Landall2/5<o<1.

m Implies absence of BEC provided the local density fluctuations are bounded,
i.e., for some p > 2:

SanE) E [(TrthJ(HZt))p] < 00.

Then for any sequence W of eigenstates composed of one-particle states

(@j’.i"’ )a=1,...,n Whose energies fall into a regime J of (ECL), the almost-sure
convergence
lim [Ivw oo
L—oo Lr

=0

holds for any% <r<i.



Proof of absence of BEC  given no obLRO

Since [[ywllec < maxn 3, (157wl

Elwl%] <D E [<Z|1w1/m|oo> } < Z (ZE[|1,nw1/m| 1”") :

By absence of ODLRO in Hilbert-Schmidt sense:
Ef[lwll%] < CL
with some C < oo that is independent of L and N. A Chebychev estimate

then implies forany e > 0and r > 0

P (Jwlloe > et7) < ElDVIET o C jroor "

o'chr — g0

If we choose r > 2/0, and the rhs is summable in L. The Borel-Cantelli
lemma thus yields the claimed almost-sure convergence. O



BEC in disorder  selected further comments
Momentum distribution:  n(k) := 11// e*VE [y (x, y)] dxdy

m remains uniformly bounded: |n(k)| < sup 1[ Z]E[||1,,W1,m\|2] < oo.
L n,m

m numerical predictions: De Martino/Thorwart/Egger/Graham '05

10

10°

pa
(At large values |k| — oo, one expects an algebraic fall-off n(k) ~ k=%,
Olshanii/Dunjko '03, Barth/Zwerger '11)



BEC in disorder selected further comments

Momentum distribution:  n(k) := 11// e*VE [yy(x, y)] dxdy

m remains uniformly bounded: |n(k)| < sup 1[ ZIE[||1,,W1,mH2] < oo.
L n,m

m numerical predictions: De Martino/Thorwart/Egger/Graham '05

Non-interacting Bose gas in disorder:
E.g. repulsive Poisson potential: Vo(x) =2, Ux—pjw), U=0
Luttinger/Kac '73/'74, Luttinger/Kac/Sy '73

(see also:  Lenoble/Pastur/Zagrebnov ‘04, Lenoble/Zagrebnov '07)

Due to drastic suppression of the density of states near bottom of the
spectrum (aka: Lifshitz tails), the critical dimension for the occurrence of BEC
is lowered to d = 1.



No superfluidity

Ground-state energy shift under twisting the
bc € as one particle moves around the ring:

. 1
ps = limsup 7 limsup L(EL(N,,0) — EL(N,,0))
6—0

L—oo

m Without disorder (V,, = 0): ps = \/2@
7r

Theorem (Absence of superfluidity) (Seiringer/W. '15)

If (ECL) holds for the energy regime (—oo, u], then for any @ > 0 and almost
surely:
limsup L(EL(Ny,0) — EL(N,,0)) =0.

L—oo

As a consequence, the superfluid density ps is zero almost surely.



IV. Elements of the proof

Proof of decay of correlations is based on:

Lemma (Improved Hadamard bound) (Sims/W. '15)

A B) € CPrax(Pta) with | K|| < 1.

i p { q _
Letv,ue(C,u,ve(C,andK_(C D

Then:
v’
det A B
CcC D

By linearity of the determinant, i.e.

< VellVIlIZIIBI + lel + llullllal + villal + oflul -

<> Q

det (W) Z adetk — (w, adiK )
w oK) 49

and the fact that ||K|| < 1 it is enough to establish the bound fora =0, u =0

and & = 0.

Moreover, w.l.o.g. ||V] = 1.



Proof of improved Hadamard bound (c

Il
=
Il
(3

m Apply a unitary operator:

10 0\ /0 v o\ /1 0O O 0 ()" o0
0oV 0)J(0o A BJ|0o U o0]=|0 VAUT VvB|=
0 0 14/ \ € D/ \0O 0 14 v cu™ D

with U taking v into (0,...,0, v||) and V s.t. VAUT is upper triangular.
Let v denote the lower right entry of VAUT.

m Perform a row operation:  Subtract s times the (p + 1)™ row from the
first row, for some s € C.

m Apply Hadamard inequality:

q
det M| < \/lIvIl — s7I? + Isf2l1BIE /I + 1812 TT /1 + 9 2.
a=1

and use

Cﬁm:wp( Zln( A )><exp( zq]va >_

m Optimize: s =7||v[(]2[2 + | B?)"



Proof idea of absence of superfluidity

Ground-state energy of the 0-twisted TG gas with N, particles:

Ny,
™
Eu(Nut) =Y Eu(6), 0= 0+ 5 (14 (-1™).
=1
Note: En, 1(0u) < p £5(0) /
N, = min{N+, N7} r—— vl
£, (m)
Nﬁi = T”(—oo,u](HLi) 5.(0)——"'//
§:0 8=m

The proof of absence of superfluidity is then based on the variational
principle:

EL(N,,0) = i, + inf {THHL(0,) — sy [0 <7 <1, Ty < N, |

Note it is possible here to relax the condition Try = N, to Trv < N, exactly because EN‘“L(Q;L) < p.



Proof idea of absence of superfluidity

Trial density matrix:

g i 9 ij © B A —ith;

- T with §i= S e o g

77 max{FL 13 ii= 3 gD
JE Y <p

Note Tr5 = Ny, hence 0 < v < 1andTry < Ny

Trial phase functions ¢;; : [0, L] — R are chosen continuous, piecewise
linear such that ;,,(0) = 0 and ;. (L) = 6:

m Localization hypothesis imlies that there is ¢ € (0, c0), £ € (0, 1] and, for
every L € N, a random amplitude A, > 0 that is uniformly integrable,
sup ey E[AL] < oo, such that

3
fu 3/2 _ L _.
&1 (n) <AL exp ( (4€)§) =:4
for all nin an interval /;(§) of length at least (L — 4)/4.
m Set ¢ linear on [;(d) with slope 6/|/;(d)|, and constant otherwise.



Proof idea of absence of superfluidity

Trial density matrix:

:}‘/ i o i fu B | o—ithj

= gy With 7= O

7= max {5, 1} g uZ Baa
FE<n

Note Tr5 = Ny, hence 0 < v < 1andTry < Ny.

Computations/simple estimates show:

Tr[Hﬁ“ — u]- 2.2 1
m Tr[H(0,) —ply < ——L—2— 4+ 6% .
MO = < = w1y * 00 2 o)
JE L <p

m 5] < 1+2|6|5LN, .

... finish with a Borel-Cantelli argument.



IV. Concluding remarks

No BEC and no superfluidity in the disordered TG gas
In other parameter regimes different behavior is possible:

m BEC and superfluidity at T = 0 with mean-field-type

interaction  Kénenberg/Moser/Seiringer/Yngvason '15
10 4=095 n=05
S ;;'\f‘
08 “’ \ !
— N
A ! \
. . 06 1 \ Bose glass
m Numerical phase-diagram o
for disordered Bose-Hubbard "

model at incommesurate filling
Rapsch/Schollwéck/Zwerger '99

02 |

0 1 2
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Tonks-Girardeau gas is the continuum analogue of XY spin chain:
m reduction of the many-particle problem to one-particle

properties

m difficulty: many-particle physical correlations reduce to
multi-point correlation functions of the underlying

one-particle problem

new estimates

Sims/W. '15
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