Decay of correlations and absence of superfluidity in the disordered Tonks-Girardeau gas

Simone Warzel

Zentrum Mathematik, TU München

based on joint works with:

R. Seiringer (to appear in: New Journal of Physics arXiv:1512.05282)

R. Sims (to appear in: Commun. Math. Phys. arXiv:1509.00450)

Grenoble, February 3, 2016

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

I. The Tonks-Girardeau gas in disorder

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- II. Main Results
- III. Elements of the proof
- IV. Concluding remarks

I. The Tonks-Girardeau gas in disorder

Consider *N* Bosons on a ring of length *L* with hard-core repulsion

$$\mathcal{H}_{L,\omega} = \sum_{j=1}^{N} \left(\mathcal{H}_{L,\omega}^{+} \right)_{j} + g \sum_{1 \leq j < k \leq N} \delta(x_{j} - x_{k})$$

and random one-particle Hamiltonian $H_{L,\omega}^+ = -\frac{d^2}{dx^2} + V_{\omega}(x)$ on $L^2([0, L])$ with periodic bc.

Tonks-Girardeau limit: $g ightarrow \infty$

Normalized eigenfunctions in the Tonks-Girardeau limit:

$$\Psi(x_1,\ldots,x_N) = \frac{1}{\sqrt{N!}} \det \left(\varphi_{j_{\alpha},L}^{\sharp_N}(x_{\beta})\right)_{\alpha,\beta=1}^N \prod_{1 \le j < k \le N} \operatorname{sign}(x_j - x_k)$$

where $(\varphi_{i_{\alpha},L}^{\sharp_{N}})$ are norm. eigenfunctions of $H_{L,\omega}^{\sharp_{N}}$ with:

- periodic bc ($\#_N = 1$) in case *N* odd, Girardeau '60
- anti-periodic bc ($\sharp_N = -1$) in case *N* even.

Lieb-Liniger '62

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

One-particle reduced density matrix

For any eigenfunction Ψ the kernel of **one-particle reduced density matrix** ($0 \le \gamma_{\Psi} \le N$, Tr $\gamma_{\Psi} = N$) takes the form of a determinant:

$$\begin{split} \gamma_{\Psi}(x,y) &:= N \int \Psi(x,x_2,\ldots,x_N) \overline{\Psi(y,x_2,\ldots,x_N)} \, dx_2 \ldots dx_N \\ &= \det \begin{pmatrix} 0 & \varphi_{j_1,L}^{\sharp_N}(x) \cdots \varphi_{j_N,L}^{\sharp_N}(x) \\ \vdots & K_N(x,y) \\ \vdots \\ \overline{\varphi_{j_N,L}^{\sharp_N}(y)} & \end{pmatrix} \end{split}$$

with $[\mathcal{K}_N(x,y)]_{\alpha,\beta} := \delta_{\alpha,\beta} - 2 \int_{[x,y]} \varphi_{j_\alpha,L}^{\sharp_N}(z) \varphi_{j_\beta,L}^{\sharp_N}(z) dz$ for all $x \leq y$.

- Only the density coincides with that of non-interacting Fermions: $\varrho_{\Psi}(x) = \gamma_{\Psi}(x, x) = \sum_{\alpha=1}^{N} |\varphi_{j_{\alpha}, L}^{\sharp_{N}}(x)|^{2}$
- BEC refers to a macroscopic value of $\|\gamma_{\Psi}\|_{\infty}$. Without disorder ($V_{\omega} = 0$): Lenard '64 $\gamma_{\Psi}(x, y) \sim |x - y|^{-1/2}$ i.e. quasi-condensation: $\|\gamma_{\Psi}\|_{\infty} \sim N^{1/2}$

Superfluid density (aka: stiffness):

Ground-state energy shift under twisting the bc $e^{i\theta}$ as one particle moves around the ring:

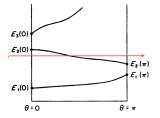
$$\rho_{s} := \limsup_{\theta \to 0} \frac{1}{\theta^{2}} \limsup_{L \to \infty} L(E_{L}(N_{\mu}, \theta) - E_{L}(N_{\mu}, 0))$$

with $E_L(N, \theta)$ ground-state energy with bc

$$\Psi(x_1,\ldots,x_j+L,\ldots,x_N)=e^{i\theta}\,\Psi(x_1,\ldots,x_j,\ldots,x_N) \ \text{ for all } j.$$

The ground-state energy for fixed chemical potential μ :

$$\begin{split} N_{\mu} &:= \min\{N_{\mu}^{+}, N_{\mu}^{-}\}, \\ N_{\mu}^{\pm} &:= \operatorname{Tr} \mathbf{1}_{(-\infty, \mu]}(H_{L}^{\pm}) \end{split}$$



Band structure of the one-particle operators $H_{L,\omega}^{\theta}$. (cf. Reed/Simon IV)

• Without disorder ($V_{\omega} = 0$): $\rho_s = \lim_{L \to \infty} \frac{1}{L} N_{\mu} = \frac{\sqrt{[\mu]_+}}{2\pi^2}$

DQC

Localization hypothesis on one-particle operator $H_{L\omega}^{\pm}$ (ECL in $J \subset \mathbb{R}$)

There exist $C, \ell \in (0, \infty)$ and $\xi \in (0, 1]$ such that for all $1 \le n, m \le L$ and all $L \in \mathbb{N}$

$$\mathbb{E}\left[Q_L^{\pm}(n,m;J)
ight] \leq C \, \exp\left(- rac{ ext{dist}(n,m)^{arepsilon}}{\ell^{arepsilon}}
ight) \, .$$

where $\mbox{dist}(\cdot,\cdot)$ denotes the Euclidean distance on the torus and

$$Q_{L}^{\pm}(n,m;J;\omega) := \sum_{j, E_{j,L}^{\pm} \in J} \Phi_{j,L}^{\pm}(n;\omega) \Phi_{j,L}^{\pm}(m;\omega),$$

with
$$\Phi_{j,L}^{\pm}(n;\omega) := \left(\int_{I_n} \left|\varphi_{j,L}^{\pm}(x;\omega)\right|^2 dx\right)^{\frac{1}{2}}$$
 and $I_n := [n, n+1)$

Generically satisfied for random H[±]_{L,ω} = −(^{d²}/_{dx²})[±] + V_ω(x) in one dimensions for any J ⊂ ℝ which is bounded from above.

Implies dynamical localization.

Immediate consequence of ECL

Given the dynamics of **free fermions** $\Psi(x_1, \ldots, x_N) = \frac{1}{\sqrt{N!}} \det (\varphi_{j_{\alpha}, L}(x_{\beta}))_{\alpha, \beta=1}^N$, and the corresponding one-particle density

$$\varrho_t(x) := \Gamma_{\Psi_t}(x, x) = \left(e^{-itH_{L,\omega}}\Gamma_{\Psi}e^{itH_{L,\omega}}\right)(x, x).$$

(pt agrees with density of the time-evolved Tonks-Girardeau gas!)

Theorem

If the range of Γ_{Ψ} at t = 0 falls within a regime $J \subset \mathbb{R}$ of (ECL), then there exists an $A \in (0, \infty)$ which is independent of N, L such that

1 the total number of particles on any subset $I \subset [0, L]$ changes on average by order one only:

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\left|\int_{I}\varrho_{t}(x)dx-\int_{I}\varrho_{0}(x)dx\right|\right]\leq A\quad\text{for all }I\subset[0,L]$$

2 for any pair of subsets $I \subset K \subset [0, L]$:

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\int_{I}\varrho_{t}(x)dx\right]\leq\mathbb{E}\left[\int_{K}\varrho_{0}(x)dx\right]+A\exp\left(-\frac{\operatorname{dist}(I,K^{c})^{\xi}}{\ell^{\xi}}\right)$$

Theorem

If the range of Γ_{Ψ} at t = 0 falls within a regime $J \subset \mathbb{R}$ of (ECL), then there exists an $A \in (0, \infty)$ which is independent of N, L such that

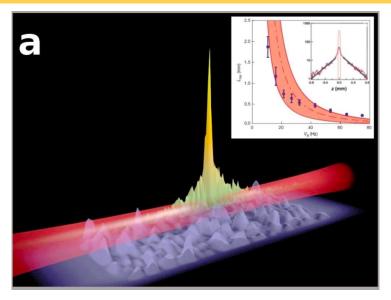
1 the total number of particles on any subset $I \subset [0, L]$ changes on average by order one only:

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\left|\int_{I}\varrho_{t}(x)dx-\int_{I}\varrho_{0}(x)dx\right|\right]\leq A\quad\text{for all }I\subset[0,L],$$

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\int_{I}\varrho_{t}(x)dx\right]\leq\mathbb{E}\left[\int_{K}\varrho_{0}(x)dx\right]+A\exp\left(-\frac{\text{dist}(I,K^{c})^{\xi}}{\ell^{\xi}}\right)\,.$$

■ One facet of **many-body localization (MBL)** – open problem for $g < \infty$!

Direct observation of Anderson localization of matter-waves in a controlled disorder



Billy, Josse, Zuo, Bernard, Hambrecht, Lugan, Clément, Sanchez-Palencia, Bouyer, Aspect: Nature **453** (2008) 891-894 By assumption on the range of the initial state, we have $\Gamma_{\Psi_t} = U_t^* \Gamma_{\Psi} U_t$ with $U_t = e^{itH_L} P_J(H_L)$. Consequently,

$$\left|\sum_{x\in I} \varrho_t(x) - \sum_{x\in I} \varrho_0(x)\right| = |\operatorname{Tr} \mathbf{1}_I U_t^* \Gamma_{\Psi} U_t - \operatorname{Tr} \mathbf{1}_I \Gamma_{\Psi}|$$

= $|\operatorname{Tr} \mathbf{1}_I U_t^* \mathbf{1}_{I^c} \Gamma_{\Psi} U_t - \operatorname{Tr} \mathbf{1}_{I^c} U_t^* \mathbf{1}_I \Gamma_{\Psi} U_t|$
 $\leq ||\mathbf{1}_I U_t^* \mathbf{1}_{I^c}||_1 + ||\mathbf{1}_{I^c} U_t^* \mathbf{1}_I||_1,$

Hence:

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\|\mathbf{1}_{I^{c}}U_{t}^{*}\mathbf{1}_{I}\|_{1}\right] \leq \sum_{\substack{I_{n}\cap I\neq\emptyset\\I_{m}\cap I^{c}\neq\emptyset}} \mathbb{E}\left[\sup_{t\in\mathbb{R}}\|\mathbf{1}_{I_{m}}U_{t}^{*}\mathbf{1}_{I_{n}}\|_{1}\right],$$

and the right side is bounded by a constant on account of dynamical localization.

II. Main Results

Theorem (Absence of ODLRO – Hilbert-Schmidt norm) (Seiringer/W. '15)

For any many-particle eigenstate Ψ , which is composed of a selection one-particle states $\{\varphi_{j_{\alpha,L}}^{\sharp_N}\}_{\alpha=1}^N$ corresponding to an energy regime J, If condition (ECL) holds for J, then there exist $A \in (0,\infty)$ independent of L and N such that

$$\mathbb{E}\left[\|\mathbf{1}_{l_n}\gamma_{\Psi}\mathbf{1}_{l_m}\|_2^{\sigma}\right] \leq A \exp\left(-\frac{2}{3}(1-\sigma)\frac{\operatorname{dist}(n,m)^{\xi}}{(2\ell)^{\xi}}\right)$$

for all $1 \le n, m \le L$ and all $2/5 \le \sigma < 1$.

Implies **absence of BEC** provided the local density fluctuations are bounded, i.e., for some p > 2:

$$\sup_{n,L} \mathbb{E}\left[\left(\operatorname{Tr} \mathbf{1}_{I_n} P_J(H_L^{\pm})\right)^p\right] < \infty.$$

Then for any sequence Ψ of eigenstates composed of one-particle states $(\varphi_{j_\alpha,L}^{\sharp_N})_{\alpha=1,...,N}$ whose energies fall into a regime J of (ECL), the almost-sure convergence

$$\lim_{L\to\infty}\frac{\|\gamma_{\Psi}\|_{\infty}}{L^r}=0$$

holds for any $\frac{2}{p} < r \le 1$.

Since
$$\|\gamma_{\Psi}\|_{\infty} \leq \max_{n} \sum_{m} \|\mathbf{1}_{l_{n}}\gamma_{\Psi}\mathbf{1}_{l_{m}}\|_{\infty}$$
:
 $\mathbb{E}[\|\gamma_{\Psi}\|_{\infty}^{\sigma}] \leq \sum_{n} \mathbb{E}\left[\left(\sum_{m} \|\mathbf{1}_{l_{n}}\gamma_{\Psi}\mathbf{1}_{l_{m}}\|_{\infty}\right)^{\sigma}\right] \leq \sum_{n} \left(\sum_{m} \mathbb{E}[\|\mathbf{1}_{l_{n}}\gamma_{\Psi}\mathbf{1}_{l_{m}}\|_{\infty}^{\sigma}]^{1/\sigma}\right)^{\sigma},$

By absence of ODLRO in Hilbert-Schmidt sense:

 $\mathbb{E}\left[\|\gamma_{\Psi}\|_{\infty}^{\sigma}\right] \leq CL$

with some $C < \infty$ that is independent of *L* and *N*. A Chebychev estimate then implies for any $\varepsilon > 0$ and r > 0

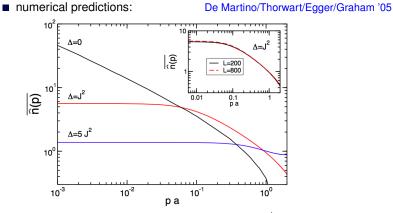
$$\mathbb{P}\left(\|\gamma_{\Psi}\|_{\infty} > \varepsilon L^{r}\right) \leq \frac{\mathbb{E}\left[\|\gamma_{\Psi}\|_{\infty}^{\sigma}\right]}{\varepsilon^{\sigma} L^{r\sigma}} \leq \frac{C}{\varepsilon^{\sigma}} L^{1-\sigma r} \,. \tag{1}$$

If we choose $r > 2/\sigma$, and the rhs is summable in *L*. The Borel-Cantelli lemma thus yields the claimed almost-sure convergence.

Momentum distribution:
$$n(k) := \frac{1}{L} \iint e^{ik(x-y)} \mathbb{E} \left[\gamma_{\Psi}(x,y) \right] dxdy$$

remains uniformly bounded:

$$|n(k)| \leq \sup_{L} \frac{1}{L} \sum_{n,m} \mathbb{E} \left[\|\mathbf{1}_{n} \gamma_{\Psi} \mathbf{1}_{I_{m}} \|_{2} \right] < \infty.$$



(At large values $|k| \rightarrow \infty$, one expects an algebraic fall-off $n(k) \sim k^{-4}$.

Olshanii/Dunjko '03, Barth/Zwerger '11) ・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Momentum distribution:
$$n(k) := \frac{1}{L} \iint e^{ik(x-y)} \mathbb{E}[\gamma_{\Psi}(x,y)] dxdy$$

• remains uniformly bounded: $|n(k)| \leq \sup_{L} \frac{1}{L} \sum_{n,m} \mathbb{E} \left[\|\mathbf{1}_{n} \gamma_{\Psi} \mathbf{1}_{I_{m}} \|_{2} \right] < \infty.$

numerical predictions:

De Martino/Thorwart/Egger/Graham '05

Non-interacting Bose gas in disorder:

E.g. repulsive Poisson potential: $V_{\omega}(x) = \sum_{j} U(x - p_{j,\omega}), \quad U \ge 0$ Luttinger/Kac '73/'74, Luttinger/Kac/Sy '73

(see also: Lenoble/Pastur/Zagrebnov '04, Lenoble/Zagrebnov '07)

Due to drastic suppression of the density of states near bottom of the spectrum (aka: *Lifshitz tails*), the critical dimension for the occurrence of BEC is lowered to d = 1.

Ground-state energy shift under twisting the bc $e^{i\theta}$ as one particle moves around the ring:

$$\rho_{s} := \limsup_{\theta \to 0} \frac{1}{\theta^{2}} \limsup_{L \to \infty} L(E_{L}(N_{\mu}, \theta) - E_{L}(N_{\mu}, 0))$$

Without disorder (
$$V_{\omega} = 0$$
): $\rho_s = \frac{\sqrt{[\mu]_+}}{2\pi^2}$

Theorem (Absence of superfluidity)

(Seiringer/W. '15)

If (ECL) holds for the energy regime $(-\infty, \mu]$, then for any $\theta > 0$ and almost surely:

$$\limsup_{L \to \infty} L(E_L(N_\mu, \theta) - E_L(N_\mu, 0)) = 0.$$

As a consequence, the superfluid density ρ_s is zero almost surely.

IV. Elements of the proof

Proof of decay of correlations is based on:

Lemma (Improved Hadamard bound)

Let
$$v, \hat{u} \in \mathbb{C}^{p}$$
, $u, \hat{v} \in \mathbb{C}^{q}$, and $K = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in C^{(p+q) \times (p+q)}$ with $||K|| \leq 1$.
Then:

$$\left| \det \begin{pmatrix} \alpha & \mathbf{v}^T & \mathbf{u}^T \\ \hat{\mathbf{u}} & \mathbf{A} & \mathbf{B} \\ \hat{\mathbf{v}} & \mathbf{C} & \mathbf{D} \end{pmatrix} \right| \leq \sqrt{\mathbf{e}} \|\mathbf{v}\| \|\hat{\mathbf{v}}\| \|\mathbf{B}\| + |\alpha| + \|\mathbf{u}\| \|\hat{\mathbf{u}}\| + \|\mathbf{v}\| \|\hat{\mathbf{u}}\| + \|\hat{\mathbf{v}}\| \|\mathbf{u}\|.$$

By linearity of the determinant, i.e.

$$\det \begin{pmatrix} \alpha & \boldsymbol{w}^T \\ \hat{\boldsymbol{w}} & \boldsymbol{K} \end{pmatrix} = \alpha \det \boldsymbol{K} - \langle \boldsymbol{w}, \operatorname{adj} \boldsymbol{K} \, \hat{\boldsymbol{w}} \rangle$$

and the fact that $||K|| \le 1$ it is enough to establish the bound for $\alpha = 0, u = 0$ and $\hat{u} = 0$. Moreover, w.l.o.g. $||\hat{v}|| = 1$.

(Sims/W. '15)

Apply a unitary operator:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & V & 0 \\ 0 & 0 & 1_q \end{pmatrix} \begin{pmatrix} 0 & v^T & 0 \\ 0 & A & B \\ \hat{v} & C & D \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & U^T & 0 \\ 0 & 0 & 1_q \end{pmatrix} = \begin{pmatrix} 0 & (Uv)^T & 0 \\ 0 & VAU^T & VB \\ \hat{v} & CU^T & D \end{pmatrix} =: M.$$

with *U* taking *v* into (0, ..., 0, ||v||) and *V* s.t. VAU^T is upper triangular. Let γ denote the lower right entry of VAU^T .

- Perform a row operation: Subtract *s* times the $(p+1)^{th}$ row from the first row, for some $s \in \mathbb{C}$.
- Apply Hadamard inequality:

$$|\det M| \le \sqrt{|\|v\| - s\gamma|^2 + |s|^2 \|B\|^2} \sqrt{|\gamma|^2 + \|B\|^2} \prod_{\alpha=1}^q \sqrt{1 + |\hat{v}_{\alpha}|^2} \,.$$

and use

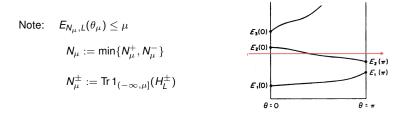
$$\prod_{\alpha=1}^{q} \sqrt{1+|\hat{v}_{\alpha}|^2} = \exp\left(\frac{1}{2}\sum_{\alpha=1}^{q} \ln\left(1+|\hat{v}_{\alpha}|^2\right)\right) \leq \exp\left(\frac{1}{2}\sum_{\alpha=1}^{q} |\hat{v}_{\alpha}|^2\right) = \sqrt{e}\,,$$

• Optimize: $s = \overline{\gamma} \|v\| (|\gamma|^2 + \|B\|^2)^{-1}$.

Proof idea of absence of superfluidity

Ground-state energy of the θ -twisted TG gas with N_{μ} particles:

$$E_L(N_\mu, heta) = \sum_{j=1}^{N_\mu} E_{j,L}(heta_\mu), \qquad heta_\mu := heta + rac{\pi}{2} \left(1 + (-1)^{N_\mu}
ight).$$



The proof of absence of superfluidity is then based on the **variational principle**:

$$E_L(N_\mu, \theta) = \mu N_\mu + \inf \left\{ \text{Tr}[H_L(\theta_\mu) - \mu] \gamma \, \big| \, \mathbf{0} \le \gamma \le \mathbf{1} \,, \, \text{Tr} \, \gamma \le N_\mu \right\} \,.$$

Note it is possible here to relax the condition Tr $\gamma = N_{\mu}$ to Tr $\gamma \leq N_{\mu}$ exactly because $E_{N_{\mu},L}(\theta_{\mu}) \leq \mu$.

Trial density matrix:

$$\gamma = \frac{\tilde{\gamma}}{\max\{\|\tilde{\gamma}\|,1\}}, \quad \text{with} \quad \tilde{\gamma} := \sum_{j: \, \mathsf{E}_{j,L}^{\sharp\mu} \leq \mu} e^{i\psi_{j,L}} |\varphi_{j,L}^{\sharp\mu}\rangle \langle \varphi_{j,L}^{\sharp\mu} | e^{-i\psi_{j,L}}.$$

Note Tr $\tilde{\gamma} = \textit{N}_{\mu}$, hence $0 \leq \gamma \leq 1$ and Tr $\gamma \leq \textit{N}_{\mu}$.

Trial phase functions $\psi_{j,L} : [0, L] \to \mathbb{R}$ are chosen continuous, piecewise linear such that $\psi_{j,L}(0) = 0$ and $\psi_{j,L}(L) = \theta$:

Localization hypothesis imlies that there is ℓ ∈ (0, ∞), ξ ∈ (0, 1] and, for every L ∈ N, a random amplitude A_L ≥ 0 that is uniformly integrable, sup_{L∈N} E[A_L] < ∞, such that

$$\Phi_{j,L}^{\sharp_{\mu}}(n) \leq A_L \, L^{3/2} \exp\left(-\frac{L^{\xi}}{(4\ell)^{\xi}}\right) =: \delta$$

for all *n* in an interval $I_j(\delta)$ of length at least (L-4)/4.

Set $\psi_{j,L}$ linear on $I_j(\delta)$ with slope $\theta/|I_j(\delta)|$, and constant otherwise.

Trial density matrix:

$$\gamma = \frac{\tilde{\gamma}}{\max\{\|\tilde{\gamma}\|, 1\}}, \quad \text{with} \quad \tilde{\gamma} := \sum_{j: E_{j,L}^{\sharp\mu} \leq \mu} e^{i\psi_{j,L}} |\varphi_{j,L}^{\sharp\mu}\rangle \langle \varphi_{j,L}^{\sharp\mu} | e^{-i\psi_{j,L}}.$$

Note Tr $\tilde{\gamma} = N_{\mu}$, hence $0 \leq \gamma \leq 1$ and Tr $\gamma \leq N_{\mu}$.

Computations/simple estimates show:

$$Tr[H_{\mathcal{L}}(\theta_{\mu}) - \mu]\gamma \leq -\frac{Tr[H_{\mathcal{L}}^{\sharp\mu} - \mu]_{-}}{\max\{\|\tilde{\gamma}\|, 1\}} + \theta^{2}\delta^{2}\sum_{j: E_{j,L}^{\sharp\mu} \leq \mu} \frac{1}{|I_{j}(\delta)|}.$$

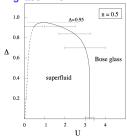
 $\blacksquare \|\tilde{\gamma}\| \leq 1 + 2|\theta|\delta LN_{\mu}.$

... finish with a Borel-Cantelli argument.

IV. Concluding remarks

- No BEC and no superfluidity in the disordered TG gas 1
- In other parameter regimes different behavior is possible: 2
 - BEC and superfluidity at T = 0 with mean-field-type interaction Könenberg/Moser/Seiringer/Yngvason '15

Numerical phase-diagram disordered Bose-Hubbard for model at incommesurate filling Rapsch/Schollwöck/Zwerger '99



э

Sac

- Tonks-Girardeau gas is the continuum analogue of XY spin chain: 3
 - reduction of the many-particle problem to one-particle properties
 - difficulty: many-particle physical correlations reduce to multi-point correlation functions of the underlying one-particle problem new estimates Sims/W. '15 ・ロト ・ 四ト ・ モト ・ モト

THANK YOU!

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●