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I. The Tonks-Girardeau gas in disorder

Consider N Bosons on a ring of length L

with hard-core repulsion

HL,ω =
N∑

j=1

(
H+

L,ω

)
j + g

∑
1≤j<k≤N

δ(xj − xk ) ,

and random one-particle Hamiltonian H+
L,ω = − d2

dx2 + Vω(x) on L2([0, L])
with periodic bc.

Tonks-Girardeau limit: g →∞

Normalized eigenfunctions in the Tonks-Girardeau limit:

Ψ(x1, . . . , xN) =
1√
N!

det
(
ϕ
]N
jα,L(xβ)

)N

α,β=1

∏
1≤j<k≤N

sign(xj − xk )

where (ϕ
]N
jα,L) are norm. eigenfunctions of H]N

L,ω with:

periodic bc ( ]N = 1 ) in case N odd, Girardeau ’60

anti-periodic bc ( ]N = −1 ) in case N even. Lieb-Liniger ’62



One-particle reduced density matrix

For any eigenfunction Ψ the kernel of one-particle reduced density matrix
(0 ≤ γΨ ≤ N, Tr γΨ = N) takes the form of a determinant:

γΨ(x , y) := N
∫

Ψ(x , x2, . . . , xN) Ψ(y , x2, . . . , xN) dx2 . . . dxN

= det


0 ϕ

]N
j1,L

(x) · · ·ϕ]N
jN ,L

(x)

ϕ
]N
j1,L

(y)
...

ϕ
]N
jN ,L

(y)

KN(x , y)


with [KN(x , y)]α,β := δα,β − 2

∫
[x,y ]

ϕ
]N
jα,L(z)ϕ

]N
jβ ,L

(z)dz for all x ≤ y .

Only the density coincides with that of non-interacting Fermions:
%Ψ(x) = γΨ(x , x) =

∑N
α=1 |ϕ

]N
jα,L

(x)|2

BEC refers to a macroscopic value of ‖γΨ‖∞.

Without disorder (Vω = 0): Lenard ’64

γΨ(x , y) ∼ |x − y |−1/2 i.e. quasi-condensation: ‖γΨ‖∞ ∼ N1/2



Superfluid density (aka: stiffness): grand-canonical definition

Ground-state energy shift under twisting the
bc eiθ as one particle moves around the ring:

ρs := lim sup
θ→0

1
θ2 lim sup

L→∞
L (EL(Nµ, θ)− EL(Nµ, 0))

with EL(N, θ) ground-state energy with bc

Ψ(x1, . . . , xj +L, . . . , xN) = eiθ Ψ(x1, . . . , xj , . . . , xN) for all j .

ei✓

The ground-state energy for fixed
chemical potential µ:

Nµ := min{N+
µ ,N

−
µ },

N±µ := Tr 1(−∞,µ](H±L )

Band structure of the one-particle
operators HθL,ω . (cf. Reed/Simon IV)

Without disorder (Vω = 0): ρs = limL→∞
1
L Nµ =

√
[µ]+

2π2



Effects of disorder

Localization hypothesis on one-particle operator H±L,ω (ECL in J ⊂ R)

There exist C, ` ∈ (0,∞) and ξ ∈ (0, 1] such that for all 1 ≤ n,m ≤ L and all
L ∈ N

E
[
Q±L (n,m; J)

]
≤ C exp

(
−dist(n,m)ξ

`ξ

)
where dist(·, ·) denotes the Euclidean distance on the torus and

Q±L (n,m; J;ω) :=
∑

j, E±
j,L∈J

Φ±j,L(n;ω)Φ±j,L(m;ω) ,

with Φ±j,L(n;ω) :=

(∫
In

∣∣∣ϕ±j,L(x ;ω)
∣∣∣2 dx

) 1
2

and In := [n, n + 1).

Generically satisfied for random H±L,ω = −( d2

dx2 )± + Vω(x) in one dimensions for
any J ⊂ R which is bounded from above.

Implies dynamical localization.



Immediate consequence of ECL

Given the dynamics of free fermions Ψ(x1, . . . , xN ) = 1√
N!

det
(
ϕjα,L(xβ)

)N
α,β=1 ,

and the corresponding one-particle density

%t (x) := ΓΨt (x , x) =
(

e−itHL,ωΓΨeitHL,ω
)

(x , x) .

(%t agrees with density of the time-evolved Tonks-Girardeau gas!)

Theorem
If the range of ΓΨ at t = 0 falls within a regime J ⊂ R of (ECL), then there exists an
A ∈ (0,∞) which is independent of N, L such that

1 the total number of particles on any subset I ⊂ [0, L] changes on average by
order one only:

E

[
sup
t∈R

∣∣∣∣∫
I
%t (x)dx −

∫
I
%0(x)dx

∣∣∣∣
]
≤ A for all I ⊂ [0, L] ,

2 for any pair of subsets I ⊂ K ⊂ [0, L]:

E

[
sup
t∈R

∫
I
%t (x)dx

]
≤ E

[∫
K
%0(x)dx

]
+ A exp

(
−

dist(I,K c)ξ

`ξ

)
.



Immediate consequence of ECL

Theorem

If the range of ΓΨ at t = 0 falls within a regime J ⊂ R of (ECL), then there
exists an A ∈ (0,∞) which is independent of N, L such that

1 the total number of particles on any subset I ⊂ [0, L] changes on
average by order one only:

E
[
sup
t∈R

∣∣∣∣∫
I
%t (x)dx −

∫
I
%0(x)dx

∣∣∣∣] ≤ A for all I ⊂ [0, L] ,

2 for any pair of subsets I ⊂ K ⊂ [0, L]:

E
[
sup
t∈R

∫
I
%t (x)dx

]
≤ E

[∫
K
%0(x)dx

]
+ A exp

(
−dist(I,K c)ξ

`ξ

)
.

One facet of many-body localization (MBL) – open problem for g <∞!



Direct observation of Anderson localization of matter-waves in a controlled disorder

Billy, Josse, Zuo, Bernard, Hambrecht, Lugan, Clément, Sanchez-Palencia, Bouyer,
Aspect: Nature 453 (2008) 891-894



Sketch of proof of MBL for free Fermions

By assumption on the range of the initial state, we have ΓΨt = U∗t ΓΨUt with
Ut = eitHL PJ (HL). Consequently,∣∣∣∣∣∑

x∈I

%t (x)−
∑
x∈I

%0(x)

∣∣∣∣∣ = |Tr 1IU∗t ΓΨUt − Tr 1IΓΨ|

= |Tr 1IU∗t 1Ic ΓΨUt − Tr 1Ic U∗t 1IΓΨUt |
≤ ‖1IU∗t 1Ic‖1 + ‖1Ic U∗t 1I‖1 ,

Hence:

E
[
sup
t∈R
‖1Ic U∗t 1I‖1

]
≤

∑
In∩I 6=∅

Im∩Ic 6=∅

E
[
sup
t∈R
‖1Im U∗t 1In‖1

]
,

and the right side is bounded by a constant on account of dynamical
localization.



II. Main Results

Theorem (Absence of ODLRO – Hilbert-Schmidt norm) (Seiringer/W. ’15)

For any many-particle eigenstate Ψ, which is composed of a selection
one-particle states {ϕ]N

jα,L}
N
α=1 corresponding to an energy regime J, If

condition (ECL) holds for J, then there exist A ∈ (0,∞) independent of L and
N such that

E [‖1InγΨ1Im‖
σ
2 ] ≤ A exp

(
−2

3
(1− σ)

dist(n,m)ξ

(2`)ξ

)
for all 1 ≤ n,m ≤ L and all 2/5 ≤ σ < 1.

Implies absence of BEC provided the local density fluctuations are bounded,
i.e., for some p > 2:

sup
n,L

E
[(

Tr 1In PJ (H±L )
)p]

<∞ .

Then for any sequence Ψ of eigenstates composed of one-particle states
(ϕ
]N
jα,L

)α=1,...,N whose energies fall into a regime J of (ECL), the almost-sure
convergence

lim
L→∞

‖γΨ‖∞
Lr

= 0

holds for any 2
p < r ≤ 1.



Proof of absence of BEC given no ODLRO

Since ‖γΨ‖∞ ≤ maxn
∑

m ‖1InγΨ1Im‖∞:

E [‖γΨ‖σ∞] ≤
∑

n

E

[(∑
m

‖1InγΨ1Im‖∞

)σ]
≤
∑

n

(∑
m

E [‖1InγΨ1Im‖
σ
∞]1/σ

)σ
,

By absence of ODLRO in Hilbert-Schmidt sense:

E [‖γΨ‖σ∞] ≤ CL

with some C <∞ that is independent of L and N. A Chebychev estimate
then implies for any ε > 0 and r > 0

P
(
‖γΨ‖∞ > εLr) ≤ E [‖γΨ‖σ∞]

εσLrσ ≤ C
εσ

L1−σr . (1)

If we choose r > 2/σ, and the rhs is summable in L. The Borel-Cantelli
lemma thus yields the claimed almost-sure convergence.



BEC in disorder selected further comments

Momentum distribution: n(k) :=
1
L

∫∫
eik(x−y)E [γΨ(x , y)] dxdy

remains uniformly bounded: |n(k)| ≤ sup
L

1
L

∑
n,m

E [‖1nγΨ1Im‖2] <∞.

numerical predictions: De Martino/Thorwart/Egger/Graham ’05

(At large values |k| → ∞, one expects an algebraic fall-off n(k) ∼ k−4.

Olshanii/Dunjko ’03, Barth/Zwerger ’11 )



BEC in disorder selected further comments

Momentum distribution: n(k) :=
1
L

∫∫
eik(x−y)E [γΨ(x , y)] dxdy

remains uniformly bounded: |n(k)| ≤ sup
L

1
L

∑
n,m

E [‖1nγΨ1Im‖2] <∞.

numerical predictions: De Martino/Thorwart/Egger/Graham ’05

Non-interacting Bose gas in disorder:

E.g. repulsive Poisson potential: Vω(x) =
∑

j U(x − pj,ω), U ≥ 0

Luttinger/Kac ’73/’74, Luttinger/Kac/Sy ’73
(see also: Lenoble/Pastur/Zagrebnov ’04, Lenoble/Zagrebnov ’07)

Due to drastic suppression of the density of states near bottom of the
spectrum (aka: Lifshitz tails), the critical dimension for the occurrence of BEC
is lowered to d = 1.



No superfluidity

Ground-state energy shift under twisting the
bc eiθ as one particle moves around the ring:

ρs := lim sup
θ→0

1
θ2 lim sup

L→∞
L (EL(Nµ, θ)− EL(Nµ, 0))

Without disorder (Vω = 0): ρs =

√
[µ]+

2π2

ei✓

Theorem (Absence of superfluidity) (Seiringer/W. ’15)

If (ECL) holds for the energy regime (−∞, µ], then for any θ > 0 and almost
surely:

lim sup
L→∞

L (EL(Nµ, θ)− EL(Nµ, 0)) = 0 .

As a consequence, the superfluid density ρs is zero almost surely.



IV. Elements of the proof

Proof of decay of correlations is based on:

Lemma (Improved Hadamard bound) (Sims/W. ’15)

Let v , û ∈ Cp, u, v̂ ∈ Cq , and K =

(
A B
C D

)
∈ C(p+q)×(p+q) with ‖K‖ ≤ 1.

Then:∣∣∣∣∣∣det

α vT uT

û A B
v̂ C D

∣∣∣∣∣∣ ≤ √e ‖v‖‖v̂‖‖B‖+ |α|+ ‖u‖‖û‖+ ‖v‖‖û‖+ ‖v̂‖‖u‖ .

By linearity of the determinant, i.e.

det
(
α wT

ŵ K

)
= α det K − 〈w , adjK ŵ〉

and the fact that ‖K‖ ≤ 1 it is enough to establish the bound for α = 0, u = 0
and û = 0.
Moreover, w.l.o.g. ‖v̂‖ = 1.



Proof of improved Hadamard bound (α = u = û = 0)

Apply a unitary operator:1 0 0
0 V 0
0 0 1q

0 vT 0
0 A B
v̂ C D

1 0 0
0 UT 0
0 0 1q

 =

0 (Uv)T 0
0 VAUT VB
v̂ CUT D

 =: M .

with U taking v into (0, . . . , 0, ‖v‖) and V s.t. VAUT is upper triangular.
Let γ denote the lower right entry of VAUT .

Perform a row operation: Subtract s times the (p + 1)th row from the
first row, for some s ∈ C.

Apply Hadamard inequality:

|det M| ≤
√
|‖v‖ − sγ|2 + |s|2‖B‖2

√
|γ|2 + ‖B‖2

q∏
α=1

√
1 + |v̂α|2 .

and use
q∏
α=1

√
1 + |v̂α|2 = exp

(
1
2

q∑
α=1

ln
(

1 + |v̂α|2
))
≤ exp

(
1
2

q∑
α=1

|v̂α|2
)

=
√

e ,

Optimize: s = γ ‖v‖(|γ|2 + ‖B‖2)−1.



Proof idea of absence of superfluidity

Ground-state energy of the θ-twisted TG gas with Nµ particles:

EL(Nµ, θ) =

Nµ∑
j=1

Ej,L(θµ) , θµ := θ +
π

2

(
1 + (−1)Nµ

)
.

Note: ENµ,L(θµ) ≤ µ

Nµ := min{N+
µ ,N

−
µ }

N±µ := Tr 1(−∞,µ](H±L )

The proof of absence of superfluidity is then based on the variational
principle:

EL(Nµ, θ) = µNµ + inf
{

Tr[HL(θµ)− µ]γ
∣∣ 0 ≤ γ ≤ 1 , Tr γ ≤ Nµ

}
.

Note it is possible here to relax the condition Tr γ = Nµ to Tr γ ≤ Nµ exactly because ENµ,L(θµ) ≤ µ.



Proof idea of absence of superfluidity

Trial density matrix:

γ =
γ̃

max{‖γ̃‖, 1} , with γ̃ :=
∑

j: E
]µ
j,L ≤µ

eiψj,L |ϕ]µj,L〉〈ϕ
]µ
j,L |e

−iψj,L .

Note Tr γ̃ = Nµ , hence 0 ≤ γ ≤ 1 and Tr γ ≤ Nµ.

Trial phase functions ψj,L : [0, L]→ R are chosen continuous, piecewise
linear such that ψj,L(0) = 0 and ψj,L(L) = θ:

Localization hypothesis imlies that there is ` ∈ (0,∞), ξ ∈ (0, 1] and, for
every L ∈ N, a random amplitude AL ≥ 0 that is uniformly integrable,
supL∈N E [AL] <∞, such that

Φ
]µ
j,L(n) ≤ AL L3/2 exp

(
− Lξ

(4`)ξ

)
=: δ

for all n in an interval Ij (δ) of length at least (L− 4)/4.

Set ψj,L linear on Ij (δ) with slope θ/|Ij (δ)|, and constant otherwise.



Proof idea of absence of superfluidity

Trial density matrix:

γ =
γ̃

max{‖γ̃‖, 1} , with γ̃ :=
∑

j: E
]µ
j,L ≤µ

eiψj,L |ϕ]µj,L〉〈ϕ
]µ
j,L |e

−iψj,L .

Note Tr γ̃ = Nµ , hence 0 ≤ γ ≤ 1 and Tr γ ≤ Nµ.

Computations/simple estimates show:

Tr[HL(θµ)− µ]γ ≤ −
Tr[H]µ

L − µ]−

max{‖γ̃‖, 1} + θ2δ2
∑

j: E
]µ
j,L ≤µ

1
|Ij (δ)| .

‖γ̃‖ ≤ 1 + 2|θ|δLNµ .

. . . finish with a Borel-Cantelli argument.



IV. Concluding remarks

1 No BEC and no superfluidity in the disordered TG gas
2 In other parameter regimes different behavior is possible:

BEC and superfluidity at T = 0 with mean-field-type
interaction Könenberg/Moser/Seiringer/Yngvason ’15

Numerical phase-diagram
for disordered Bose-Hubbard
model at incommesurate filling
Rapsch/Schollwöck/Zwerger ’99

3 Tonks-Girardeau gas is the continuum analogue of XY spin chain:
reduction of the many-particle problem to one-particle
properties
difficulty: many-particle physical correlations reduce to
multi-point correlation functions of the underlying
one-particle problem new estimates Sims/W. ’15



THANK YOU!


