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Vojkan Jakšić (McGill University)

and
Armen Shirikyan (Université de Cergy-Pontoise)
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Fluctuations of entropy production

Probability of violation of the 2nd Law
or how often does heat flow from cold to hot

Transient fluctuation relations [Evans–Morriss–Searles ’94]
Steady state fluctuation relations [Gallavotti–Cohen ’95]
Stochastic dynamics [Kurchan ’98, Lebowitz–Spohn ’99]
..............(including quantum dynamics).....................
Experimental verifications [Ciliberto et al., ’05 – ’13, ...]
Reviews [Rondoni–Mejia-Monasterio ’07, Seifert ’12]
”Entropic regularity” [Jakšić–P–Rey-Bellet ’11]
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Heat transfers through dynamical networks

T2T1

T4

T3
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Heat transfers through dynamical networks

T2T1

T4

T3

“Thermodynamic Entropy Balance”
Entropy Ssystem is not a conserved quantity

dSsystem

dt
= −

∑
i

Φi (t)
Ti

+σ(t),
{

Φi = energy flux to i th reservoir
σ = entropy production rate
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Heat transfers through dynamical networks

T2T1

T4

T3

Out of thermal equilibium
Thermodynamic (Clausius) entropy Ssystem is not even defined

But in many cases of interest (Hamiltonian systems, Langevin
stochastic dynamics) a microscopic entropy balance equation holds

Ssystem = Gibbs-Shannon entropy,
is a state dependent quantity.
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Heat transfers through dynamical networks

T2T1

T4

T3

“1st and 2nd Law” for steady states

∑
i

〈Φi (t)〉steady state = 0, 〈σ(t)〉steady state =
∑

i

〈Φi (t)〉steady state

Ti
≥ 0,
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Heat transfers through dynamical networks

T2T1

Φ1 Φ2

Steady state with T1 > T2

〈Φ1〉+ 〈Φ2〉 = 0,
〈Φ1〉
T1

+
〈Φ2〉
T2
≥ 0 ⇒ 〈Φ2〉 = −〈Φ1〉 ≥ 0
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Heat transfers through dynamical networks

T1 = 10

T4 = 7 T3 = 6

T2 = 4

Φ = 0

Strange heat fluxes [Eckmann-Zabey ‘04]
4∑

i=1

〈Φi〉
Ti
≥ 0, but

〈Φ3〉
T3

+
〈Φ4〉
T4

< 0

Understanding the statistics of entropy production is fundamental for
heat pump engineering, and much more (→ next talk by Tristan
Benoist)!
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Fluctuation “Theorems”

No matter how the entropy production rate σ is defined, the fact that
〈σ(t)〉 ≥ 0 does not preclude the entropy production St =

∫ t
0 σ(s)ds to

become negative.

Fluctuation theorems give universal quantitative information on the
probability of such violations of the 2nd law. Roughly stated, St
satisfies a FT whenever

P[St = st ]
P[St = −st ]

' est , (s ∈ R, t →∞)

i.e., Negative values of St are exponentially suppressed as t →∞.

As stressed by [Gallavotti-Cohen ’95], the physically interesting and
mathematically non-trivial aspects of FT can be formulated in terms
of large deviations.
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Jakšić–P–Shirikyan, Harmonic Networks 7/28



Fluctuation “Theorems”

A functional St of a dynamical/stochastic process
satisfies a FT if:

lim
t→∞

1
t

logP
[

1
t
St ∈ O

]
= − inf

s∈O
I(s) (1)

for all open sets O ⊂ R with a rate function satisfying

I(−s)− I(s) = s, (s ∈ R) (2)
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satisfies a FT if:

lim
t→∞

1
t

logP
[

1
t
St ∈ O

]
= − inf

s∈O
I(s) (1)

for all open sets O ⊂ R with a rate function satisfying

I(−s)− I(s) = s, (s ∈ R) (2)

Gärtner-Ellis theorem relates I(s) to the CGF of St

I(s) = sup
α

(αs − e(−α)), e(α) ≡ lim
t→∞

1
t

logEµ[e−αSt ]

FT (2) translates into Gallavotti-Cohen symmetry

e(1− α) = e(α), (α ∈ R) (3)
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Fluctuation “Theorems”

A functional St of a dynamical/stochastic process
satisfies a FT if:

lim
t→∞

1
t

logP
[

1
t
St ∈ O

]
= − inf

s∈O
I(s) (1)

for all open sets O ⊂ R with a rate function satisfying

I(−s)− I(s) = s, (s ∈ R) (2)

(a) steady state/transient FT↔ stationary/non-stationary process

(b) local FT↔ (1) only holds for O ⊂]s−, s+[

(c) a given system may have several, distinct functionals satisfying a FT
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Positive Results

[Gallavotti–Cohen ’95, Ruelle ’99] Global steady-state FT for the
phase-space contraction of strongly chaotic dynamical systems.

[Rey-Bellet–Thomas ’02] For transient quasi-Markovian
anharmonic chains the GC symmetry holds for the entropy flux
St =

∫ t
0 ( Φ1(s)

T1
+ Φ2(s)

T2
)ds on ]− δ, 1 + δ[ for some δ > 0. This

yields a local transient FT.
[Jakšić–P–Shirikyan ’15] For regular enough transient Gaussian
dynamical systems the GC symmetry holds on some open
interval ]− δ, 1 + δ[ and yields a global transient FT for some
natural entropy production functional.
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Negative Results

[Farago, ’02, van Zon-Cohen ’03, Visco ’06,...] In some linear
stochastic models one observes a breakdown of the symmetry
leading to the concept of extended fluctuation relations
I(−s)− I(s) = s(s).
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[Jakšić-P-Shirikyan ’15] For stationary Gaussian dynamical
systems the symmetry only holds on some open interval ]− δ, δ[
(δ > 0). One can cook up simple examples where δ < 1/2 and
where e(α) = +∞ for |α| > δ.
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The Folklore
Let St be a putative entropy production for a process with state
variable xt

The CGF e(α) of St can be +∞ outside an interval [α−, α+] 3 0.
If 1

2 ∈]α−, α+[ then for |α− 1
2 | < min(α+ − 1

2 ,
1
2 − α−)

e(1− α) = e(α).

For systems with compact phase space, adding a boundary term
f (xt )− g(x0) to St does not affect its CGF. This is not so for
non-compact phase space: [α−, α+] may depend on f and g.
Among all possible modifications of St by boundary terms, there
is one which yields the maximal interval of finiteness of its CGF.
Any two such CGF coincide on their common domain of
finiteness.
The Gärtner-Ellis theorem yields a global LDP if the maximal
CGF is steep, i.e., as α→ α± either e(α) or e′(α) diverges.

Our main interest in harmonic networks is to substantiate this folklore
on a well defined, simple but non trivial class of nonequilibrium
dynamical systems.
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Model

RI ⊕ RI 3 (p,q) 7→ H(p,q) =
1
2
|p|2 +

1
2

q · ω2q, ω > 0

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi
−1

2
(σσ∗p)i + (σT 1/2ẇ)i

∂I ⊂ I, σ : R∂I → RI , T : R∂I → R∂I

(σu)i =

{ √
2γiui i ∈ ∂I

0 i ∈ I \ ∂I (Tu)i = Tiui

E[ẇi (t)] = 0, E[ẇi (s)ẇj (t)] = δijδ(t − s) (i , j ∈ ∂I)

Time reversal θ : (p,q) 7→ (−p,q)
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, ṗi = −∂H
∂qi
−1

2
(σσ∗p)i + (σT 1/2ẇ)i
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Jakšić–P–Shirikyan, Harmonic Networks 12/28



Model

RI ⊕ RI 3 (p,q) 7→ H(p,q) =
1
2
|p|2 +

1
2

q · ω2q, ω > 0

q̇i =
∂H
∂pi
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Fokker-Planck operator

x =

[
p
ωq

]
, Q =

[
σT 1/2

0

]
, Ω =

[
0 −ω
ω 0

]
,

Γ = QT−1Q∗, B = QQ∗, A = Ω− 1
2

Γ

dxt = Axt dt + Bdwt ⇒ L =
1
2
∇ · B∇− Ax · ∇

Kalman Condition: (A,Q) is controllable∨
n

Ran(AnQ) = RI ⊕ RI

⇓
L is hypoelliptic with unique ”ground state”

The process has an ergodic (even mixing) invariant measure µ
with a smooth and strictly positive density (a Gaussian!)
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Entropy (heat) dissipation

Work of Langevin forces

dH = LHdt + QT x · dw =
∑
i∈∂I

dφi

dφi =
1
2

(Q∗Q)iidt − 1
2

(T−1/2Q∗x)2
i dt + (Q∗x)idwi

Dissipated entropy

dS = −
∑
i∈∂I

dφi

Ti

Entropy flux is a “natural” functional from physical perspective

St =

∫ t

0
dS = −

∫ t

0

(
T−1Q∗x · dw − 1

2
|T−1Q∗x |2dt − 1

2 tr(QT−1Q∗)dt
)
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The Mother of GC-symmetry

The “Traditional” approach to FT
Choose your favorite physically relevant quantity (work performed on
the system, heat dissipated in the reservoirs, phase space
contraction rate,...) compute its CGF and show by some clever tricks
that it satisfies/does not satisfy the symmetry.

A canonical construction [Jakšić–P–Rey-Bellet ’11]
Radically different philosophy: define a canonical entropy production
functional Ept which by construction satisfies the symmetry.
Whether or not a given physical quantity also satisfies the symmetry
depends on how it is related to Ept .
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Example. In our model, St has a CGF

eS(α) = lim
t→∞

1
t

logE
[
e−αSt

]
which is finite on ] − δ, 1[ for some δ > 0 and infinite on the comple-
ment of [−δ, 1]. It satisfies the GC symmetry on ]0,1[

A canonical construction [Jakšić–P–Rey-Bellet ’11]
Radically different philosophy: define a canonical entropy production
functional Ept which by construction satisfies the symmetry.
Whether or not a given physical quantity also satisfies the symmetry
depends on how it is related to Ept .
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The Mother of GC-symmetry

Probability space (Ω,P,P)

θ measurable involution of Ω s.t. P̃ = P ◦ θ ∼ P
Canonical entropy production

Ep = log
dP
dP̃

= −Ep ◦ θ

Expected value = Relative entropy∫
Ep dP = Ent(P|P̃) ≥ 0

with equality iff P̃ = P
If the symmetry θ is broken P̃ 6= P then P favors positive values of
Ep
The CGF of Ep is Rényi’s relative α-entropy

e(α) = log
∫

e−αEpdP = Entα(P̃|P)
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The Mother of GC-symmetry

Rényi relative α-entropy of two equivalent measures µ ∼ ν is defined
by

Entα(ν|µ) = log
∫ (

dν
dµ

)α
dµ.

convex function of α
vanishing for α ∈ {0,1}
non-positive for α ∈]0,1[

non-negative for α 6∈ [0,1]

real-analytic on some interval I ⊃]0,1[ and infinite on the
complement of its closure
trivially satisfies

Ent1−α(ν|µ) = Entα(µ|ν)

vanishes identically iff µ = ν
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Rényi relative α-entropy of two equivalent measures µ ∼ ν is defined
by

Entα(ν|µ) = log
∫ (

dν
dµ

)α
dµ.

convex function of α
vanishing for α ∈ {0,1}
non-positive for α ∈]0,1[

non-negative for α 6∈ [0,1]

real-analytic on some interval I ⊃]0,1[ and infinite on the
complement of its closure
trivially satisfies

Ent1−α(ν|µ) = Entα(µ|ν)

vanishes identically iff µ = ν
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The Mother of GC-symmetry
Rényi relative α-entropy of two equivalent measures µ ∼ ν is defined
by

Entα(ν|µ) = log
∫ (

dν
dµ

)α
dµ.

CGF of Ep satisfies GC symmetry

e(α) = Entα(P̃|P) = Ent1−α(P|P̃) = Ent1−α(P̃|P) = e(1− α)

The laws P and P̃ of Ep and −Ep satisfy the FT
dP
dP̃

(s) = es

In applications to dynamical processes, P is the path-space
measure for a finite time interval [0, t ] and θ is time-reversal
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Martingales

Path-space: C([0, τ ],RI ⊕ RI)
Path-space measure: Pτµ (stationary Markov process)
Time-reversal: Θτ (x)t = θxτ−t

Time-reversed path-space measure: P̃τµ = Pτµ ◦Θτ

Theorem I
(i) Canonical entropy production is a modification of the entropy flux
by boundary terms

P̃τµ ∼ Pτµ and Epτ = log
dPτµ
dP̃τµ

= Sτ − log
dµ
dx

(θxτ ) + log
dµ
dx

(x0)

(ii) The limit

e(α) = lim
τ→∞

1
τ

log
∫

e−αEpτ dPτµ

exists for all α ∈ R
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The maximal CGF
Let β ∈ L(RI ⊕ RI) be such that

θβ = βθ, βQ = QT−1

and set

dµβ(x) = e−
1
2 x·βx dx , σβ(x) =

1
2

x · Σβx , Σβ = [Ω, β]

Theorem II
Ept =

∫ t
0 σβ(xs)ds − log dµ

dµβ
(θxτ ) + log dµ

dµβ
(x0)

E(ν) = Q∗(A∗ − iν)−1Σβ(A + iν)−1Q is independent of the choice of β

ε− = min
ν∈R

minspec(E(ν)) ≤ 0, 0 ≤ ε+ = max
ν∈R

maxspec(E(ν)) < 1

κc = 1
ε+
− 1

2 ≥ 1
2
ϑmax+ϑmin
ϑmax−ϑmin

> 1
2

e(α) =

{ ∫∞
−∞ log det(I − αE(ν)) dν

4π |α− 1
2 | ≤ κc

+∞ |α− 1
2 | > κc
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The maximal CGF
Let

Kα =

[
−Aα B
Cα A∗α

]
, Aα = (1− α)A + αθAθ, Cα = α(1− α)QT−2Q∗

Corollary
e(α) is continuous on Īc = [ 1

2 − κc ,
1
2 + κc ] and has an analytic

continuation to the cut plane (C \ R)∪] 1
2 − κc ,

1
2 + κc [.

Either κc =∞ and e(α) ≡ 0, or κc <∞ and e(α)is strictly convex on Īc{
e(α) ≤ 0 |α− 1

2 | ≤ 1
2

e(α) ≥ 0 |α− 1
2 | ≥ 1

2

If κc <∞ then e′(1) = −e′(0) = ep > 0 and

lim
α↓ 1

2−κc

e′(α) = −∞, lim
α↑ 1

2 +κc

e′(α) = +∞

e(α) = 1
4 tr(QT−1Q∗)− 1

4

∑
k∈spec(Kα)

|Rek |mk
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Global LDP for the canonical entropy production

Theorem III

lim inf
t→∞

1
t

logPµ
[

Ept

t
∈ C

]
≥ − inf

s∈C
I(s)

lim sup
t→∞

1
t

logPµ
[

Ept

t
∈ O

]
≤ − inf

s∈O
I(s)

I(s) = sup
α

(αs − e(−α))

I(−s)− I(s) = s

s

I(s)

ep

e(α)

+∞

1 1
2 + κc

1
2 − κc

α
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The Algebraic Riccati Equation

Theorem IV
For α ∈ Īc the matrix equation

XBX − XAα − A∗αX − Cα = 0 (3)

has a maximal symmetric solution Xα, a real-analytic concave
function of α such that

Xα

 < 0 for α ∈] 1
2 − κc ,0[;

= 0 for α = 0;
> 0 for α ∈]0, 1

2 + κc [;

(3) is an algebraic Riccati equation whose solutions are closely
related to some invariant subspaces of Kα. It appears in many
problems of linear control/filtering. Efficient numerical algorithms are
available to compute the maximal solution.
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Perturbations of Ept by boundary terms
Consider the CGF

gt (α) =
1
t

log
∫

eEpt +Φ(xt )−Ψ(x0)dPt
ν , Φ(x) = 1

2 x · Fx , Ψ(x) = 1
2 x ·Gx

where ν is Gaussian with covariance N. Denote by N̂ the Moore-Penrose
inverse of N and Pν the projection on RanN.

Theorem V
gt (α) is finite on some interval ]α−(t), α+(t)[ and infinite on the closure
of its complement.

Either α−(t) = −∞ or limα↓α−(t) g′t (α) = −∞
Either α+(t) = +∞ or limα↑α+(t) g′t (α) = +∞

Let I∞ = I− ∩ I+ where

I− = {α ∈ Īc | θX1−αθ + α(X1 + F ) > 0}
I+ = {α ∈ Īc | N̂ + Pν(Xα − α(G + θX1θ))|RanN > 0}

then limt→∞ gt (α) = e(α) for α ∈ I∞.
Let α− = inf I∞, α+ = sup I∞. Then

lim
t→∞

α±(t) = α±, lim
t→∞

gt (α) = +∞, for α 6∈ [α−, α+]
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LDP for perturbations of Ept

Set

η− =

{
−∞ if α+ = 1

2 + κc

e′(α+) if α+ < 1
2 + κc

η+ =

{
+∞ if α− = 1

2 − κc

e′(α+ = −) if α− > 1
2 − κc

Theorem VI
Under the law Pν the functional St = Ept + Φ(xt )−Ψ(x0) satisfies a
global LDP with rate function

J(s) =


−sα+ − e(α+) if s < η−

I(s) if η− ≤ s ≤ η+

−sα− − e(α−) if s > η+

J(−s)− J(s) < s for s > max(−η−, η+), i.e., St satisfies an extended
FT.
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g(α)

+∞

α

α− α+1

J(s)

−e′(0)

s

η+η−

slope −α+

slope −α−

slope −η−

slope −η+
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Example: a triangular network
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Jakšić–P–Shirikyan, Harmonic Networks 26/28



Example: Jacobi chains
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��������������������������������
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ϑ1

1 2 La1 a2 aL−1

b1 b2 bL

γLγ1 ϑL

1
2
|ωq|2 =

1
2

L∑
i=1

biq2
i +

L−1∑
i=1

aiqiqi+1

Theorem VII
Assuming ω > 0 and a1 · · · aL−1 6= 0, the chain is controllable.
If ϑ1 6= ϑL, then ep > 0.
If the chain is symmetric, then

κc = κ0 := 1
2
ϑmax+ϑmin
ϑmax−ϑmin

otherwise κc > κ0.
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Open Problems

External forcing (work statistics)
LDP for fluctuations of individual fluxes
Get sharper estimates on κc in terms of the topology of the
network and its symmetries
Martingale approach to anharmonic networks
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