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Motivations and state of the art

Problem

Let d > 3 and ¢ € (0,7/2). We define C, 4, the cone with "circular”
cross-section by:

Cdﬁ = {(X1,...,Xd) S R : Xy = cotd ZXIZ}
j=1

Figure: The cone Cy,p in dimension d = 3.

We are interested in the self-adjoint operator H, ¢, , acting on L2(R)
which formally writes:

Ha’cm) =-A- Oz(;(X — Cdﬁ), a>0.
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Motivations and state of the art

Goals

Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
i) #odis(Ha,c,,) = o0
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Motivations and state of the art

Goals

Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
i) #odis(Ha,c,,) = o0

_a2/4 R
For E > 0, we define the counting function:

N—a2/4—E(Ha,Cd,g) = #{)\ € Udis(Ha,Cdye) A< —a2/4 — E}
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Motivations and state of the art

Goals

Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
i) #odis(Ha,c,,) = o0

é

| a
T >

—a?/4 R
For E > 0, we define the counting function:

N—a2/4—E(Ha,Cd,y) = #{)\ S Udis(Ha,Cdte) A< —a2/4 - E} =0
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Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
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T >
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For E > 0, we define the counting function:
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Motivations and state of the art

Goals

Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
i) #odis(Ha,c,,) = o0

E
S

| »
_a2/4 R
For E > 0, we define the counting function:

N—a2/4—E(Ha,Cd,y) = #{)\ S Udis(Ha,Cdte) A< —a2/4 — E} =2
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Motivations and state of the art

Goals

Theorem [

In dimension d = 3, we have:
) ess(Hac,,) = [~a?/4,+00),
i) #odis(Ha,c,,) = o0

E
S

| »
_a2/4 R
For E > 0, we define the counting function:

N—a2/4—E(Ha,Cd,y) = #{)\ S Udis(Ha,Cdte) A< —a2/4 — E} =2

@ For d = 3: behaviour of N_,2/4_£(Ha.c, ,) when E — 0.

@ Structure of the spectrumin d > 4.
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Motivations and state of the art

Laplacians and conical structures

Conical Layers:
P. EXNER, M. TATER
Spectrum of Dirichlet Laplacian in a conical layer. J. Phys. A (2010)

@ M. DAUGE, T. O.-B., N. RAYMOND
Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Comm. Pure and
Applied Ana. (2015)
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Description of the problem and main result

Definition of the ¢-interaction
Letd > 3, a > 0and ¥ € (0,7/2). We define the quadratic form

Qu.c [U] = [VUlEaey — allulze, ). dom(Qac,,) = H'(R).
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The quadratic form Q, ¢, , is closed and semi-bounded on L2(R?).
Therefore, we denote H,, ¢, , the associated self-adjoint operator given
by its Friedrichs extension.

(Reduction toa = 1] Let u € dom(Q,c,,), we define X = a~'x. As
Cq, is dilatation invariant we get:
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Definition of the ¢-interaction
Letd > 3, a > 0and ¥ € (0,7/2). We define the quadratic form

Qu.c [U] = [VUlEaey — allulze, ). dom(Qac,,) = H'(R).

BEHRNDT, EXNER, LOTOREICHIK

The quadratic form Q, ¢, , is closed and semi-bounded on L2(R?).
Therefore, we denote H,, ¢, , the associated self-adjoint operator given
by its Friedrichs extension.

(Reductlon toa = 1] Let u € dom(Q,c,,), we define X = a~'x. As
Cq, is dilatation invariant we get:

QO«,CL/,() [U] a Q1 ,.Cd ()[Z'\l]

Ty 0,

From now on, we drop the index 1: Qs ¢,, = Qc,, and Hi¢,, = He, ,.
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Description of the problem and main result

Main result

Theorem | (15)]

Let 0 € (0,7/2).
i) Indimension d > 3, gess(He, ,) = [-1/4, +00).
ii) In dimension d = 3, we have

cotd
N_1/4_E(Hcdye)~?|lnE|, E — 0.

iii) In dimension d > 4, ogis(He, ,) = 0.
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Description of the problem and main result

Main result

Theorem | (15)]

Let 0 € (0,7/2).
i) Indimension d > 3, gess(He, ,) = [-1/4, +00).
ii) In dimension d = 3, we have

cotd
N-1ja-e(He, ) ~ 7—IInE|, E—0.

iii) In dimension d > 4, ogis(He, ,) = 0.

For the operator H, ¢, ,:

N_a2/4_E(Ha,Cd,g)_N 1/4— a*zE(HCd.e)
~ 25 In(a2E)| ~ &wuna E—0
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Description of the problem and main result

(hyper-)cylindrical coordinates

Let (r,z,¢) € Ry x R x S°~2 be the cylindrical coordinates, for all
ke{l,...,d—-2}:

k1 g2
X =1r (H sin gbp) cosgk, Xg1=r[[sing, xs=z

p=1 p=1
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Description of the problem and main result

(hyper-)cylindrical coordinates

Let (r,z,¢) € Ry x R x S°~2 be the cylindrical coordinates, for all
ke{l,...,d—-2}:

k1 g2
xk=r|]singp | cosgk, xi_1=r]]singp, xi=z
p=1 p=1

R becomes R2 x S?~2. C, , becomes ) x S772;
r

-7 r(_)

Figure: Meridian domain R2 and the ray l‘yz
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Description of the problem and main result

(hyper-)cylindrical coordinates

Let (r,z,¢) € Ry x R x S°~2 be the cylindrical coordinates, for all
ke{l,...,d—-2}:

k1 g2
X =1r (H sin gbp) cosgk, Xg1=r[[sing, xs=z

p=1 p=1

R becomes R2 x S?~2. C, , becomes ) x S772;
r

-7 r(_)

Figure: Meridian domain R2 and the ray l‘yz

The quadratic form Qc, , is expressed as

d,6

Q. oltl= [, (0 +10:uP + 2| VarosulP)r'2drdzdm, ()
R2 xS9-2

- [ luts.)on(s)dms (o).
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Description of the problem and main result

Spherical harmonics

Let —Ag.—2 be the Laplace-Beltrami operator on the sphere S°—2.
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Description of the problem and main result

Spherical harmonics

Let —Ag.—2 be the Laplace-Beltrami operator on the sphere S°—2.

For | € N, its eigenvalues are /(/ + d — 3) and the associated
eigenspaces are of dimension:

- (3157) (4115,
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Description of the problem and main result

Spherical harmonics

Let —Ag.—2 be the Laplace-Beltrami operator on the sphere S°—2.

For | € N, its eigenvalues are /(/ + d — 3) and the associated
eigenspaces are of dimension:

S d+i-2 d+1-4
o(d. 1) = ( d-2 >_< d-2 >
For k € {1,...,¢(d, )}, Y, ? denote the spherical harmonics associ-
ated to /(/ + d — 3). We have:

[3(RE x S"72, r"2drdzdm,_»(¢)) = L2(RZ, r~2drdz) @ L2(S" 2, dm._2(¢))
c(d,l)
69 {E B2, r*2drdz) @ span( ¥ ) }

1

D
c(d,!

EB L*(R%, r?~2drdz)
eN*

Il
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Description of the problem and main result

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic
forms:

I(l+d-3
Qy;k][u] :/ (|8rU|2 + |8Zu|2 + %Mz)fd_zdrdz
R

— [ |u(ssind, scos6)|?(ssin#)?2ds.
R,
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Description of the problem and main result

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic
forms:

I(l+d-3
Qy;k][u] :/ (|8rU|2 + |(9zu|2 + %Wﬁ)fd_zdrdz
RY
— | Ju(ssind, scos?)*(ssing)’2ds.
Ry

The quadratic forms do not depend on k and their domains are:

{u:u,du,0,u e L2(R2, r'~2drdz)}, 1=0,

My —
dom(Qr,) = { {u: u,0,u,0,u,r 'u e LA(R2, r~2drdz)}, 1> 0.
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Description of the problem and main result

Fiber decomposition

Decomposing into spherical harmonics, we get the family of quadratic
forms:

I(l+d-3
Q') = / (loruf + fo,u + 2 =3) +r2 ) |u2)r2drdz
RE
— [ |u(ssind, scos6)|?(ssin#)?2ds.
R4
The quadratic forms do not depend on k and their domains are:

{u:u,du,0,u e L2(R2, r'~2drdz)}, 1=0,

My —
dom(Qr,) = { {u: u,0,u,0,u,r 'u e LA(R2, r~2drdz)}, 1> 0.

If (1,d) = (/,3) and / > 0 then for all u € dom(Q{"), u(0, z) = 0.
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e Proof



Flat metric

LOTOREICHIK,O.-B.

Let d > 3 and / € N such that (d, /) # (3,0). Then Q! is unitarily
equivalent to the quadratic form

)

/ 0,02 + 0,02 + '?W\zdrdz — | |u(ssind, scosd)|*ds,
R2 R,

with 7(d, 1) = I(I + d — 3) + (1/4)(d — 2)(d — 4) and & € H}(R?),
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LOTOREICHIK,O.-B.

Let d > 3 and / € N such that (d, /) # (3,0). Then Q! is unitarily
equivalent to the quadratic form

- - ~(d, 1) . .
/ |0, 0% + 10,02 + %Mzdrdz — | |u(ssind, scosd)|*ds,
R2 R,

with 7(d, 1) = I(I + d — 3) + (1/4)(d — 2)(d — 4) and & € H}(R?),

4

Let (d, /) # (3,0): Foru € dom(le), we let i = r(9=2)/2y, We
look at le [r—(9=2)/27]. Integrating by parts we get:

or DG e 2o — [ (oapar | 19 g2
R, R, R, 4r
+ ——lim(r9=3u|?).
r—0
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Flat metric

LOTOREICHIK,O.-B.
Let d > 3 and / € N such that (d,/) # (3,0). Then oﬁ’l is unitarily
equivalent to the quadratic form

- - ~(d, 1) . .
/ |0, 0% + 10,02 + %Mzdrdz — | |u(ssind, scosd)|*ds,
R2 R,
with +(d/, ) = (1 + o — 3) + (1/4)(d — 2)(d —4) and I € H}(R2),
Let (d, /) # (3,0): Foru € dom(le), we let i = r(9=2)/2y, We
look at oﬁ’l [r—(9=2)/27]. Integrating by parts we get:

Ry

or D) e 2o — [ Jo,afar+ | 19 g2
R, R, 4r?
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Flat metric

LOTOREICHIK,O.-B.
Let d > 3 and / € N such that (d,/) # (3,0). Then oﬁ’l is unitarily
equivalent to the quadratic form
/ 0,02 + 0,02 + A'/(?iz’l)wzdrdz — | |u(ssind, scosd)|*ds,
RE

R

with ~(d, 1) = I(/ + d — 8) + (1/4)(d — 2)(d — 4) and & € H}(R?),

Let (d, /) # (3,0): Foru € dom(le), we let i = r(9=2)/2y, We
look at oﬁ’] [r—(9=2)/27]. Integrating by parts we get:

. F(d), .~
A 19,(r~9=2/2) 22 = 5 |8,u|2dr+/R ’4(r2)\u|2dr

d—-2
(d=3)
* g )

N————’

=0
a>4
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Reduction to (d,/) = (3, 0)

LOTOREICHIK,O.-B.

Let d >3 and /€ N*. QP}) can generate discrete spectrum only if
(d,) =(8,0).
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Reduction to (d,/) = (3, 0)

LOTOREICHIK,O.-B.

Let d >3 and /€ N*. Qy}) can generate discrete spectrum only if
(d,) =(8,0).

When (1) # (3,0), 4(d. /) > 0.
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Reduction to (d,/) = (3, 0)

LOTOREICHIK,O.-B.

Let d >3 and /€ N*. Qy}) can generate discrete spectrum only if
(d,) =(8,0).

When (d, 1) # (3,0), 7(d, /) > 0. For i1 € H} (R?)
N—(d—2)/25 - -
QP D20 > |Vl e ) — (10l
= ||VEI0||%2(]R2) - H’:’OHiZ(r)’ o € H'(R?).
> —(1/4)]1TolZ2gpy = —(1/4) 0z ez -
Thanks to the min-max principle: infa(Q[r'(])) > —(1/4).

We focus only on (d, /) = (3, 0) to prove the accumu-
lation of the eigenvalues.
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Asymptotics of the counting function

ssinf +tcost =0

In these variables the quadratic form
reads:

Qq, [u] :/ (18su)? + |Orul?)(ssin 6 + tcos 6)dsdt
Qp

- / |u(s, 0)|?s sin 6ds
s>0
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Asymptotics of the counting function

In these variables the quadratic form

t/ ‘ reads:

S ng[u]:/ (18su)? + |Orul?)(ssin 6 + tcos 6)dsdt
Qp

. - |u(s, 0)|?s sin 6ds
ssint +tcost) =0 /s>0

Now, we bound Qq, by two quadratic forms using Dirichlet and Neu-
mann bracketing:
Qg E) <Qq, < QBSI(E

Where, QN ) and QE,sf are tensored quadratic forms.
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Asymptotics of the counting function

In these variables the quadratic form

t/ ‘ reads:

S ng[u]:/ (18su)? + |Orul?)(ssin 6 + tcos 6)dsdt
Qp

. - |u(s, 0)|?s sin 6ds
ssint +tcost) =0 /s>0

Now, we bound Qq, by two quadratic forms using Dirichlet and Neu-
mann bracketing:
Qg E) <Qq, < QBSI(E

Where, QN and QE,sf are tensored quadratic forms. It yields

No1ja-e(Qe) < No1/a-£(Qq,) S No1/a-e(Qe))
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Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1
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Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1

For u € dom(Qq,) such that u =0 on Q \ Hst(E) we define
QBst(E)[U] = Qq, [u].

We get the form ordering:
Qq, < Qast(E) = Qll-jist(E)v

where @,351(,5) is the expression ors/SBSt(E) in the flat metric.



Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1

We get the final form ordering
Qa, < Qhye) < Qaeys

where QBS“E) quadratic form of a tensored operator on L?(Hst(E)) of

the shape: 1

— 9~ 00 =% - gzeing
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Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1

We get the final form ordering
Qa, < Qhye) < Qaeys

where QBS“E) quadratic form of a tensored operator on L?(Hst(E)) of
the shape: 1

—02 — 89— — ———

—_—— 4s2sin(

>\1(E)>1/4
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Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1

Finally we have:

1
N—1/4—E—>\1(E)(_8§ -

452 sine)
We choose M > 0 such that 1/4 + E + X\(E) = O(E|In E|).

[ P. EXNER, K. YOSHITOMI
Asymptotics of eigenvalues of the Schrédinger operator with
strong d-interaction on a loop. J. Geom. Phys. (2002)

<N_1/4-£(Qqy)
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Lower bound on the counting function

Hst(E)

(sin®)~" + M|In E|

ssinf +tcost =0 ssinf +tcost =1

Finally we have:

]
N_t1jag-r(E)(=05 =

452 sine)
We choose M > 0 such that 1/4 + E + X\(E) = O(E|In E|).

[] W. KIrscH, B. SIMON
Corrections to the classical behavior of the number of bound
states of Schrédinger operators. Ann. Phys. (1988)

<N_1/4-£(Qqy)
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Eskerrik asko zure arretagatik !
jGracias por vuestra atencion !
Thank you for your attention !

Merci pour votre attention !
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