Block-modified random matrices, operator-valued free probability, and applications to entanglement theory

Ion Nechita

CNRS, LPT Toulouse

joint work with Octavio Arizmendi and Carlos Vargas (Guanajuato)

Grenoble, February 4th 2016

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geq 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathbb{M}_{m}^{1,+}, \rho_{2}(i) \in \mathbb{M}_{n}^{1,+}$

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathbb{M}_{m}^{1,+} \otimes \mathbb{M}_{n}^{1,+}\right]$
- Non-separable states are called entangled

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

- For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$
E_{\mathrm{ent}}\left(P_{x}\right)=H(s(x))=-\sum_{i=1}^{\min (m, n)} s_{i}(x) \log s_{i}(x)
$$

where $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n} \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_{i}(x)$ are its singular values.

- A pure state $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is separable $\Longleftrightarrow E_{\text {ent }}\left(P_{x}\right)=0$.

Separability criteria

- Let \mathcal{A} be a C^{*} algebra. A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geq 0 \Longrightarrow f(A) \geq 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geq 1$ ($k=n$ is enough).
- Let $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- Let $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- ρ_{12} separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
- $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right)=\sum_{i} t_{i} \rho_{1}(i) \otimes f\left(\rho_{2}(i)\right)$.
- For all $i,\left(\left[\rho_{2}(i)\right) \geq 0\right.$, so $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- Hence, positive, but not CP maps f provide sufficient entanglement criteria: if $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \nsupseteq 0$, then ρ_{12} is entangled.
- Moreover, if $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$ for all positive, but not CP maps $f: \mathbb{M}_{n} \rightarrow \mathbb{M}_{m}$, then ρ_{12} is separable.
- Actually, for the exact converse to hold, uncountably many positive maps are needed [Skowronek], and for a very rough approximation of $\mathcal{S E P}$, exponentially many positive maps are needed [Aubrun, Szarek].

Positive Partial Transpose matrices

- The transposition map $\mathrm{t}: A \mapsto A^{t}$ is positive, but not CP. Define the convex set

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathbb{M}_{m n}^{1,+} \mid\left[\operatorname{id}_{m} \otimes \mathrm{t}_{n}\right]\left(\rho_{12}\right) \geq 0\right\} .
$$

- For $(m, n) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P} \mathcal{P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P \mathcal { T }}$ is strict.
- Low dimensions are special because every positive map $f: \mathbb{M}_{2} \rightarrow \mathbb{M}_{2 / 3}$ is decomposable:

$$
f=g_{1}+g_{2} \circ t,
$$

with $g_{1,2}$ completely positive. Among all decomposable maps, the transposition criterion is the strongest.

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathbb{M}_{2 \cdot 2}^{1,+}$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose each block $B_{i j}$:

$$
\rho_{12}^{\Gamma}=\left[\mathrm{id}_{2} \otimes \mathrm{t}_{2}\right]\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

- To any map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
C_{f}=\left[\mathrm{id}_{n} \otimes f\right]\left(P_{\text {Bell }) \in \mathbb{M}_{n} \otimes \mathcal{A}}\right.
$$

- Equivalently, if $E_{i j}$ are the matrix units in \mathbb{M}_{n}, then

$$
C_{f}=\sum_{i, j=1}^{n} E_{i j} \otimes f\left(E_{i j}\right)
$$

Theorem (Choi '72)

A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is $C P$ iff its Choi matrix C_{f} is positive.

The Choi-Jamiołkowski isomorphism

- Recall (from now on $\mathcal{A}=\mathbb{M}_{d}$)

$$
C_{f}=\left[\mathrm{id}_{n} \otimes f\right]\left(P_{\text {Bell }}\right)=\sum_{i, j=1}^{n} E_{i j} \otimes f\left(E_{i j}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

- The map $f \mapsto C_{f}$ is called the Choi-Jamiołkowski isomorphism.
- It sends:
(1) All linear maps to all operators;
(2) Hermicity preserving maps to hermitian operators;
(3) Entanglement breaking maps to separable quantum states;
(9) Unital maps to operators with unit left partial trace ($[\operatorname{Tr} \otimes \mathrm{id}] C_{f}=\mathrm{I}_{d}$);
(5) Trace preserving maps to operators with unit left partial trace $\left([\mathrm{id} \otimes \operatorname{Tr}] C_{f}=\mathrm{I}_{n}\right)$.

How powerful are the entanglement criteria?

- Let $f: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ be a given linear map (f positive, but not CP).
- If $[f \otimes \mathrm{id}](\rho) \ngtr 0$, then $\rho \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}$ is entangled.
- If $[f \otimes \operatorname{id}](\rho) \geq 0$, then \ldots we do not know.
- Define

$$
\mathcal{K}_{f}:=\{\rho:[f \otimes \mathrm{id}](\rho) \geq 0\} \supseteq \mathcal{S E P} .
$$

- We would like to compare (e.g. using the volume) the sets \mathcal{K}_{f} and $\mathcal{S E P}$.
- Several probability measures on the set $\mathbb{M}_{m d}^{1,+}$: for any parameter $s \geq m d$, let W be a Wishart matrix of parameters ($m d, s$):

$$
W=X X^{*} \text {, with } X \in \mathbb{M}_{m d \times s} \text { a Ginibre random matrix. }
$$

- Let \mathbb{P}_{s} be the probability measure obtained by pushing forward the Wishart measure by the map $W \mapsto W / \operatorname{Tr}(W)$.
- To compute $\mathbb{P}_{s}\left(\mathcal{K}_{f}\right)$, one needs to decide whether the spectrum of the random matrix $[f \otimes \mathrm{id}](W)$ is positive (here, d is large, m, n are fixed) \leadsto block modified matrices.

Block-modified random matrices - previous results

Many cases studied independently, using the method of moments; no unified approach, each case requires a separate analysis:

- [Aubrun '12]: the asymptotic spectrum of $W^{\ulcorner }:=[\mathrm{id} \otimes \mathrm{t}](W)$ is a shifted semicircular, for $W \in \mathbb{M}_{d} \otimes \mathbb{M}_{d}, d \rightarrow \infty$
- [Banica, N. '13]: the asymptotic spectrum of $W^{\Gamma}:=[\operatorname{id} \otimes \mathrm{t}](W)$ is a free difference of free Poisson distributions, for $W \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}, d \rightarrow \infty, m$ fixed
- [Jivulescu, Lupa, N. '14,'15]: the asymptotic spectrum of $W^{\text {red }}:=W-[\operatorname{Tr} \otimes \mathrm{id}](W) \otimes I$ is a compound free Poisson distribution, for $W \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}, d \rightarrow \infty, m$ fixed (here, $\left.f(X)=X-\operatorname{Tr}(X) \cdot I\right)$
- etc...
\leadsto we propose a general, unified framework for such problems

The problem

- Consider a sequence of unitarily invariant random matrices $X_{d} \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}$, having limiting spectral distribution μ.
- Define the modified version of X_{d} :

$$
X_{d}^{f}=\left[f \otimes \operatorname{id}_{d}\right]\left(X_{d}\right) .
$$

- Our goal: compute μ^{f}, the limiting spectral distribution of \hat{X}_{d}, as a function of
(1) The initial distribution μ
(2) The function f.
- Results: achieved this for all μ and a fairly large class of f.
- Tools: operator-valued free probability theory.

An example

$$
f\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right)=\left[\begin{array}{cc}
11 a_{11}+15 a_{22}-25 a_{12}-25 a_{21} & 36 a_{21} \\
36 a_{12} & 11 a_{11}-4 a_{22}
\end{array}\right]
$$

Wigner distribution

Wishart distribution

Arcsine distribution

Taking the limit

- We can write

$$
X_{d}^{f}=[f \otimes \mathrm{id}]\left(X_{d}\right)=\sum_{i, j, k, l=1}^{n} c_{i j k l}\left(E_{i j} \otimes I_{d}\right) X_{d}\left(E_{k l} \otimes I_{d}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

for some coefficients $c_{i j k l} \in \mathbb{C}$, which are actually the entries of the Choi matrix of f.

- At the limit:

$$
x^{f}=\sum_{i, j, k, l=1}^{n} c_{i j k l} e_{i, j} x e_{k, l},
$$

for some random variable x having the same distribution as the limit of X_{d} and some (abstract) matrix units $e_{i j}$.
\leadsto In the rectangular case $m \neq n$, one needs to use the techniques of Benaych-Georges; we will have freeness with amalgamation on $\left\langle p_{m}, p_{m}\right\rangle$.

Operator valued freeness

Definition

(1) Let \mathcal{A} be a unital $*$-algebra and let $\mathbb{C} \subseteq \mathcal{B} \subseteq \mathcal{A}$ be a $*$-subalgebra. A \mathcal{B}-probability space is a pair $(\mathcal{A}, \mathbb{E})$, where $\mathbb{E}: \mathcal{A} \rightarrow \mathcal{B}$ is a conditional expectation, that is, a linear map satisfying:

$$
\begin{aligned}
\mathbb{E}\left(b a b^{\prime}\right) & =b \mathbb{E}(a) b^{\prime}, \quad \forall b, b^{\prime} \in \mathcal{B}, a \in \mathcal{A} \\
\mathbb{E}(1) & =1 .
\end{aligned}
$$

(2) Let $(\mathcal{A}, \mathbb{E})$ be a \mathcal{B}-probability space and let $\bar{a}:=a-\mathbb{E}(a) 1_{\mathcal{A}}$ for any $a \in \mathcal{A}$. The $*$-subalgebras $\mathcal{B} \subseteq A_{1}, \ldots, A_{k} \subseteq \mathcal{A}$ are \mathcal{B}-free (or free over \mathcal{B}, or free with amalgamation over \mathcal{B}) (with respect to \mathbb{E}) iff

$$
\mathbb{E}\left(\overline{\bar{a}_{1}} \overline{\bar{a}_{2}} \cdots \overline{a_{r}}\right)=0,
$$

for all $r \geq 1$ and all tuples $a_{1}, \ldots, a_{r} \in \mathcal{A}$ such that $a_{i} \in A_{j(i)}$ with $j(1) \neq j(2) \neq \cdots \neq j(r)$.
(3) Subsets $S_{1}, \ldots, S_{k} \subset \mathcal{A}$ are \mathcal{B}-free if so are the $*$-subalgebras $\left\langle S_{1}, \mathcal{B}\right\rangle, \ldots,\left\langle S_{k}, \mathcal{B}\right\rangle$.

Similar to independence, freeness allows to compute mixed moments free random variables in terms of their individual moments.

Matrix-valued probability spaces

Let \mathcal{A} be a unital C^{*}-algebra and let $\tau: \mathcal{A} \rightarrow \mathbb{C}$ be a state. Consider the algebra $\mathbb{M}_{n}(\mathcal{A}) \cong \mathbb{M}_{n} \otimes \mathcal{A}$ of $n \times n$ matrices with entries in \mathcal{A}. The maps

$$
\begin{aligned}
\mathbb{E}_{3}:\left(a_{i j}\right)_{i j} & \mapsto\left(\tau\left(a_{i j}\right)\right)_{i j} \in \mathbb{M}_{n}, \\
\mathbb{E}_{2}:\left(a_{i j}\right)_{i j} & \mapsto\left(\delta_{i j} \tau\left(a_{i j}\right)\right)_{i j} \in \mathbb{D}_{n},
\end{aligned}
$$

and

$$
\mathbb{E}_{1}:\left(a_{i j}\right)_{i j} \mapsto \sum_{i=1}^{n} \frac{1}{n} \tau\left(a_{i i}\right) I_{n} \in \mathbb{C} \cdot I_{n}
$$

are respectively, conditional expectations onto the algebras $\mathbb{M}_{n} \supset \mathbb{D}_{n} \supset \mathbb{C} \cdot I_{n}$ of constant matrices, diagonal matrices and multiples of the identity.

Proposition

If A_{1}, \ldots, A_{k} are free in (\mathcal{A}, τ), then the algebras $M_{n}\left(A_{1}\right), \ldots, M_{n}\left(A_{k}\right)$ of matrices with entries in A_{1}, \ldots, A_{k} respectively are in general not free over \mathbb{C} (with respect to \mathbb{E}_{1}). They are, however, \mathbb{M}_{n}-free (with respect to \mathbb{E}_{3}).

Restricting cumulants

Proposition (Nica, Shlyakhtenko, Speicher)

Let $1 \in \mathcal{D} \subset \mathcal{B} \subset \mathcal{A}$ be algebras such that $(\mathcal{A}, \mathbb{F})$ and $(\mathcal{B}, \mathbb{E})$ are respectively \mathcal{B}-valued and \mathcal{D}-valued probability spaces and let $a_{1}, \ldots, a_{k} \in \mathcal{A}$. Assume that the \mathcal{B}-cumulants of $a_{1}, \ldots, a_{k} \in \mathcal{A}$ satisfy

$$
R_{i_{1}, \ldots, i_{n}}^{\mathcal{B} ; a_{1}, \ldots a_{k}}\left(d_{1}, \ldots, d_{n-1}\right) \in \mathcal{D}
$$

for all $n \in \mathbb{N}, 1 \leq i_{1}, \ldots, i_{n} \leq k, d_{1}, \ldots, d_{n-1} \in \mathcal{D}$.
Then the \mathcal{D}-cumulants of a_{1}, \ldots, a_{k} are exactly the restrictions of the \mathcal{B}-cumulants of a_{1}, \ldots, a_{k}, namely for all $n \in \mathbb{N}, 1 \leq i_{1}, \ldots, i_{n} \leq k, d_{1}, \ldots, d_{n-1} \in \mathcal{D}$:

$$
R_{i_{1}, \ldots, a_{1}, \ldots, a_{k}}^{\mathcal{B} ;}\left(d_{1}, \ldots, d_{n-1}\right)=R_{i_{1}, \ldots, i_{1}}^{\mathcal{D} ; a_{n}, a_{k}}\left(d_{1}, \ldots, d_{n-1}\right),
$$

Corollary

Let $\mathcal{B} \subseteq A_{1}, A_{2} \subseteq \mathcal{A}$ be \mathcal{B}-free and let $\mathcal{D} \subseteq M_{N}(\mathbb{C}) \otimes \mathcal{B}$. Assume that, individually, the $\mathbb{M}_{N} \otimes \mathcal{B}$-valued moments (or, equivalently, the $\mathbb{M}_{N} \otimes \mathcal{B}$-cumulants) of both $x \in \mathbb{M}_{N} \otimes A_{1}$ and $y \in \mathbb{M}_{N} \otimes A_{2}$, when restricted to arguments in \mathcal{D}, remain in \mathcal{D}. Then x, y are \mathcal{D}-free.

A different formulation

Proposition

The block-modified random variable x^{f} has the following expression in terms of the eigenvalues and of the eigenvectors of the Choi matrix C :

$$
x^{f}=v^{*}(x \otimes C) v
$$

where

$$
v=\sum_{s=1}^{n^{2}} b_{s}^{*} \otimes a_{s} \in \mathcal{A} \otimes \mathbb{M}_{n^{2}}
$$

a_{s} are the eigenvectors of C, and the random variables $b_{s} \in \mathcal{A}$ are defined by $b_{s}=\sum_{i, j=1}^{n}\left\langle E_{i} \otimes E_{j}, a_{s}\right\rangle e_{i, j}$.

Theorem

Consider a linear map $f: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ having a Choi matrix $C \in \mathbb{M}_{n^{2}} \subset \mathcal{A} \otimes \mathbb{M}_{n^{2}}$ which has tracially well behaved eigenspaces. Then, the random variables $x \otimes C$ and $v v^{*}$ are free with amalgamation over the (commutative) unital algebra $\mathcal{B}=\langle C\rangle$ generated by the matrix C.

Well behaved functions

Definition

We say that f is well behaved if the eigenspaces of its Choi matrix are tracially well behaved if

$$
\tau\left(b_{j_{1}} b_{j_{2}}^{*} Q_{i_{1}} \ldots Q_{i_{k}}\right)=\delta_{j_{1} j_{2}} \tau\left(b_{j_{1}} b_{j_{1}}^{*} Q_{i_{1}} \ldots Q_{i_{k}}\right),
$$

for every $i_{1}, \ldots, i_{k} \leq n^{2}$ and $j_{1}, j_{2} \leq n^{2}$. We define

$$
Q_{i}=b_{i}^{*} b_{i} .
$$

$~$ a stronger condition:

Definition

The Choi matrix C is said to satisfy the unitarity condition if, for all t, there is some real constant d_{t} such that $[\mathrm{id} \otimes \operatorname{Tr}]\left(P_{t}\right)=d_{t} I_{n}$, where P_{t} are the eigenprojectors of C.

The limiting distributions of block-modified matrices

Theorem

If the Choi matrix C satisfies the unitarity condition, then the distribution of x^{f} has the following R-transform:

$$
R_{x^{f}}(z)=\sum_{i=1}^{s} d_{i} \rho_{i} R_{x}\left[\frac{\rho_{i}}{n} z\right],
$$

where ρ_{i} are the distinct eigenvalues of C and $n d_{i}$ are ranks of the corresponding eigenprojectors. In other words, if μ, resp. μ^{f}, are the respective distributions of x and x^{f}, then

$$
\mu^{f}=\boxplus_{i=1}^{s}\left(D_{\rho_{i} / n} \mu\right)^{\boxplus n d_{i}} .
$$

Range of applications

The following functions are well behaved
(1) Unitary conjugations $f(X)=U X U^{*}$
(2) The trace and its dual $f(X)=\operatorname{Tr}(X), f(x)=x I_{n}$
(3) The transposition $f(X)=X^{\top}$
(- The reduction map $f(X)=I_{n} \cdot \operatorname{Tr}(X)-X$
(0. Linear combinations of the above $f(X)=\alpha X+\beta \operatorname{Tr}(X) I_{n}+\gamma X^{\top}$
(0) Mixtures of orthogonal automorphisms

$$
f(X)=\sum_{i=1}^{n^{2}} \alpha_{i} U_{i} X U_{i}^{*}
$$

for orthogonal unitary operators U_{i}

$$
\operatorname{Tr}\left(U_{i} U_{j}^{*}\right)=n \delta_{i j}
$$

The End

- O. Arizmendi, I.N., C. Vargas - On the asymptotic distribution of block-modified random matrices - JMP 2016, arXiv:1508.05732
- A. Nica, R. Speicher - Lectures on the combinatorics of free probability CUP 2006
- R. Speicher - Combinatorial theory of the free product with amalgamation and operator-valued free probability theory - Memoirs of the AMS 1998
- B. Collins, I.N. - Random matrix techniques in quantum information theory JMP 2016, arXiv:1509.04689

