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Entanglement in Quantum Information Theory

Quantum states with n degrees of freedom are described by density matrices

ρ ∈M1,+
n = End1,+(Cn); Trρ = 1 and ρ ≥ 0

Two quantum systems: ρ12 ∈ End1,+(Cm ⊗ Cn) = M1,+
mn

A state ρ12 is called separable if it can be written as a convex combination of
product states

ρ12 ∈ SEP ⇐⇒ ρ12 =
∑
i

tiρ1(i)⊗ ρ2(i),

where ti ≥ 0,
∑

i ti = 1, ρ1(i) ∈M1,+
m , ρ2(i) ∈M1,+

n

Equivalently, SEP = conv
[
M1,+

m ⊗M1,+
n

]
Non-separable states are called entangled

Ion Nechita (CNRS, LPT Toulouse) Block-modified random matrices, operator-valued free probability, and applications to entanglement theoryGrenoble, February 4th 2016 2 / 24



More on entanglement - pure states

Separable rank one (pure) states ρ12 = Pe⊗f = Pe ⊗ Pf .

Bell state or maximally entangled state ρ12 = PBell, where

C2 ⊗ C2 3 Bell =
1√
2

(e1 ⊗ f1 + e2 ⊗ f2) 6= x ⊗ y .

For rank one quantum states, entanglement can be detected and quantified
by the entropy of entanglement

Eent(Px) = H(s(x)) = −
min(m,n)∑

i=1

si (x) log si (x),

where x ∈ Cm ⊗ Cn ∼= Mm×n(C) is seen as a m × n matrix and si (x) are its
singular values.

A pure state x ∈ Cm ⊗ Cn is separable ⇐⇒ Eent(Px) = 0.
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Separability criteria

Let A be a C∗ algebra. A map f : Mn → A is called
positive if A ≥ 0 =⇒ f (A) ≥ 0;
completely positive (CP) if idk ⊗ f is positive for all k ≥ 1 (k = n is enough).

Let f : Mn → A be a completely positive map. Then, for every state
ρ12 ∈M1,+

mn , one has [idm ⊗ f ](ρ12) ≥ 0.

Let f : Mn → A be a positive map. Then, for every separable state
ρ12 ∈M1,+

mn , one has [idm ⊗ f ](ρ12) ≥ 0.
ρ12 separable =⇒ ρ12 =

∑
i tiρ1(i)⊗ ρ2(i).

[idm ⊗ f ](ρ12) =
∑

i tiρ1(i)⊗ f (ρ2(i)).
For all i , ([ρ2(i)) ≥ 0, so [idm ⊗ f ](ρ12) ≥ 0.

Hence, positive, but not CP maps f provide sufficient entanglement criteria:
if [idm ⊗ f ](ρ12) � 0, then ρ12 is entangled.

Moreover, if [idm ⊗ f ](ρ12) ≥ 0 for all positive, but not CP maps
f : Mn →Mm, then ρ12 is separable.

Actually, for the exact converse to hold, uncountably many positive maps are
needed [Skowronek], and for a very rough approximation of SEP,
exponentially many positive maps are needed [Aubrun, Szarek].
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Positive Partial Transpose matrices

The transposition map t : A 7→ At is positive, but not CP. Define the convex
set

PPT = {ρ12 ∈M1,+
mn | [idm ⊗ tn](ρ12) ≥ 0}.

For (m, n) ∈ {(2, 2), (2, 3)} we have SEP = PPT . In other dimensions, the
inclusion SEP ⊂ PPT is strict.

Low dimensions are special because every positive map f : M2 →M2/3 is
decomposable:

f = g1 + g2 ◦ t,
with g1,2 completely positive. Among all decomposable maps, the
transposition criterion is the strongest.
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The PPT criterion at work

Recall the Bell state ρ12 = PBell, where

C2 ⊗ C2 3 Bell =
1√
2

(e1 ⊗ f1 + e2 ⊗ f2).

Written as a matrix in M1,+
2·2

ρ12 =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
1

2

(
B11 B12

B21 B22

)
.

Partial transposition: transpose each block Bij :

ρΓ
12 = [id2 ⊗ t2](ρ12) =

1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

This matrix is no longer positive =⇒ the state is entangled.
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The Choi matrix of a map

For any n, recall that the maximally entangled state is the orthogonal
projection onto

Cn ⊗ Cn 3 Bell =
1√
n

n∑
i=1

ei ⊗ ei .

To any map f : Mn → A, associate its Choi matrix

Cf = [idn ⊗ f ](PBell) ∈Mn ⊗A.
Equivalently, if Eij are the matrix units in Mn, then

Cf =
n∑

i,j=1

Eij ⊗ f (Eij).

Theorem (Choi ’72)

A map f : Mn → A is CP iff its Choi matrix Cf is positive.
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The Choi-Jamio lkowski isomorphism

Recall (from now on A = Md)

Cf = [idn ⊗ f ](PBell) =
n∑

i,j=1

Eij ⊗ f (Eij) ∈Mn ⊗Md .

The map f 7→ Cf is called the Choi-Jamio lkowski isomorphism.

It sends:
1 All linear maps to all operators;
2 Hermicity preserving maps to hermitian operators;
3 Entanglement breaking maps to separable quantum states;
4 Unital maps to operators with unit left partial trace ([Tr⊗ id]Cf = Id);
5 Trace preserving maps to operators with unit left partial trace

([id⊗ Tr]Cf = In).
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How powerful are the entanglement criteria?

Let f : Mm →Mn be a given linear map (f positive, but not CP).

If [f ⊗ id](ρ) � 0, then ρ ∈Mm ⊗Md is entangled.

If [f ⊗ id](ρ) ≥ 0, then . . . we do not know.

Define

Kf := {ρ : [f ⊗ id](ρ) ≥ 0} ⊇ SEP.
We would like to compare (e.g. using the volume) the sets Kf and SEP.

Several probability measures on the set M1,+
md : for any parameter s ≥ md , let

W be a Wishart matrix of parameters (md , s):

W = XX ∗, with X ∈Mmd×s a Ginibre random matrix.

Let Ps be the probability measure obtained by pushing forward the Wishart
measure by the map W 7→W /Tr(W ).

To compute Ps(Kf ), one needs to decide whether the spectrum of the
random matrix [f ⊗ id](W ) is positive (here, d is large, m, n are fixed) ;

block modified matrices.
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Block-modified random matrices - previous results

Many cases studied independently, using the method of moments; no unified
approach, each case requires a separate analysis:

[Aubrun ’12]: the asymptotic spectrum of W Γ := [id⊗ t](W ) is a shifted
semicircular, for W ∈Md ⊗Md , d →∞
[Banica, N. ’13]: the asymptotic spectrum of W Γ := [id⊗ t](W ) is a free
difference of free Poisson distributions, for W ∈Mm ⊗Md , d →∞, m fixed

[Jivulescu, Lupa, N. ’14,’15]: the asymptotic spectrum of
W red := W − [Tr⊗ id](W )⊗ I is a compound free Poisson distribution, for
W ∈Mm ⊗Md , d →∞, m fixed (here, f (X ) = X − Tr(X ) · I )

etc...

; we propose a general, unified framework for such problems
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The problem

Consider a sequence of unitarily invariant random matrices Xd ∈Mn ⊗Md ,
having limiting spectral distribution µ.

Define the modified version of Xd :

X f
d = [f ⊗ idd ](Xd).

Our goal: compute µf , the limiting spectral distribution of X̂d , as a function
of

1 The initial distribution µ
2 The function f .

Results: achieved this for all µ and a fairly large class of f .

Tools: operator-valued free probability theory.
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An example

f

([
a11 a12

a21 a22

])
=

[
11a11 + 15a22 − 25a12 − 25a21 36a21

36a12 11a11 − 4a22

]
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Wigner distribution
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Wishart distribution

Ion Nechita (CNRS, LPT Toulouse) Block-modified random matrices, operator-valued free probability, and applications to entanglement theoryGrenoble, February 4th 2016 14 / 24



Arcsine distribution
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Taking the limit

We can write

X f
d = [f ⊗ id](Xd) =

n∑
i,j,k,l=1

cijkl(Eij ⊗ Id)Xd(Ekl ⊗ Id) ∈Mn ⊗Md ,

for some coefficients cijkl ∈ C, which are actually the entries of the Choi
matrix of f .

At the limit:

x f =
n∑

i,j,k,l=1

cijklei,jxek,l ,

for some random variable x having the same distribution as the limit of Xd

and some (abstract) matrix units eij .

; In the rectangular case m 6= n, one needs to use the techniques of
Benaych-Georges; we will have freeness with amalgamation on 〈pm, pm〉.
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Operator valued freeness

Definition

(1) Let A be a unital ∗-algebra and let C ⊆ B ⊆ A be a ∗-subalgebra. A
B-probability space is a pair (A,E), where E : A → B is a conditional
expectation, that is, a linear map satisfying:

E (bab′) = bE(a)b′, ∀b, b′ ∈ B, a ∈ A
E (1) = 1.

(2) Let (A,E) be a B-probability space and let ā := a− E(a)1A for any a ∈ A.
The ∗-subalgebras B ⊆ A1, . . . ,Ak ⊆ A are B-free (or free over B, or free with
amalgamation over B) (with respect to E) iff

E(ā1ā2 · · · ār ) = 0,

for all r ≥ 1 and all tuples a1, . . . , ar ∈ A such that ai ∈ Aj(i) with
j(1) 6= j(2) 6= · · · 6= j(r).
(3) Subsets S1, . . . ,Sk ⊂ A are B-free if so are the ∗-subalgebras
〈S1,B〉, . . . , 〈Sk ,B〉.

Similar to independence, freeness allows to compute mixed moments free random
variables in terms of their individual moments.
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Matrix-valued probability spaces

Let A be a unital C∗-algebra and let τ : A → C be a state. Consider the algebra
Mn(A) ∼= Mn ⊗A of n × n matrices with entries in A. The maps

E3 : (aij)ij 7→ (τ(aij))ij ∈Mn,

E2 : (aij)ij 7→ (δijτ(aij))ij ∈ Dn,

and

E1 : (aij)ij 7→
n∑

i=1

1

n
τ(aii )In ∈ C · In

are respectively, conditional expectations onto the algebras Mn ⊃ Dn ⊃ C · In of
constant matrices, diagonal matrices and multiples of the identity.

Proposition

If A1, . . . ,Ak are free in (A, τ), then the algebras Mn(A1), . . . ,Mn(Ak) of matrices
with entries in A1, . . . ,Ak respectively are in general not free over C (with respect
to E1). They are, however, Mn-free (with respect to E3).
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Restricting cumulants

Proposition (Nica, Shlyakhtenko, Speicher)

Let 1 ∈ D ⊂ B ⊂ A be algebras such that (A,F) and (B,E) are respectively
B-valued and D-valued probability spaces and let a1, . . . , ak ∈ A. Assume that the
B-cumulants of a1, . . . , ak ∈ A satisfy

RB;a1,...,ak
i1,...,in

(d1, . . . , dn−1) ∈ D,
for all n ∈ N, 1 ≤ i1, . . . , in ≤ k, d1, . . . , dn−1 ∈ D.
Then the D-cumulants of a1, . . . , ak are exactly the restrictions of the B-cumulants
of a1, . . . , ak , namely for all n ∈ N, 1 ≤ i1, . . . , in ≤ k, d1, . . . , dn−1 ∈ D:

RB;a1,...,ak
i1,...,in

(d1, . . . , dn−1) = RD;a1,...,ak
i1,...,in

(d1, . . . , dn−1) ,

Corollary

Let B ⊆ A1,A2 ⊆ A be B-free and let D ⊆ MN(C)⊗ B. Assume that,
individually, the MN ⊗ B-valued moments (or, equivalently, the
MN ⊗ B-cumulants) of both x ∈MN ⊗ A1 and y ∈MN ⊗ A2, when restricted to
arguments in D, remain in D. Then x , y are D-free.
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A different formulation

Proposition

The block-modified random variable x f has the following expression in terms of
the eigenvalues and of the eigenvectors of the Choi matrix C:

x f = v∗(x ⊗ C )v ,

where

v =
n2∑
s=1

b∗s ⊗ as ∈ A⊗Mn2 ,

as are the eigenvectors of C , and the random variables bs ∈ A are defined by
bs =

∑n
i,j=1〈Ei ⊗ Ej , as〉ei,j .

Theorem
Consider a linear map f : Mn →Mn having a Choi matrix C ∈Mn2 ⊂ A⊗Mn2

which has tracially well behaved eigenspaces. Then, the random variables x ⊗ C
and vv∗ are free with amalgamation over the (commutative) unital algebra
B = 〈C 〉 generated by the matrix C.
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Well behaved functions

Definition

We say that f is well behaved if the eigenspaces of its Choi matrix are tracially
well behaved if

τ(bj1 b∗j2 Qi1 . . .Qik ) = δj1j2τ(bj1 b∗j1 Qi1 . . .Qik ),

for every i1, . . . , ik ≤ n2 and j1, j2 ≤ n2. We define

Qi = b∗i bi .

; a stronger condition:

Definition

The Choi matrix C is said to satisfy the unitarity condition if, for all t, there is
some real constant dt such that [id⊗ Tr](Pt) = dt In, where Pt are the
eigenprojectors of C .
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The limiting distributions of block-modified matrices

Theorem

If the Choi matrix C satisfies the unitarity condition, then the distribution of x f

has the following R-transform:

Rx f (z) =
s∑

i=1

diρiRx

[ρi
n

z
]
,

where ρi are the distinct eigenvalues of C and ndi are ranks of the corresponding
eigenprojectors. In other words, if µ, resp. µf , are the respective distributions of
x and x f , then

µf = �s
i=1(Dρi/nµ)�ndi .
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Range of applications

The following functions are well behaved

1 Unitary conjugations f (X ) = UXU∗

2 The trace and its dual f (X ) = Tr(X ), f (x) = xIn
3 The transposition f (X ) = X>

4 The reduction map f (X ) = In · Tr(X )− X

5 Linear combinations of the above f (X ) = αX + βTr(X )In + γX>

6 Mixtures of orthogonal automorphisms

f (X ) =
n2∑
i=1

αiUiXU∗i ,

for orthogonal unitary operators Ui

Tr(UiU
∗
j ) = nδij .
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