Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations ${ }^{1}$

P. T. Nam ${ }^{1} \quad$ M. Napiórkowski ${ }^{1} \quad$ J. P. Solovej ${ }^{2}$
${ }^{1}$ Institute of Science and Technology Austria
${ }^{2}$ Department of Mathematics, University of Copenhagen
GDR Dynqua meeting, Grenoble

${ }^{1}$ J. Funct. Anal. (in press)

Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

$$
\mathbb{H}=\mathrm{d} \Gamma(h)+\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle J^{*} k f_{m}, f_{n}\right\rangle a\left(f_{m}\right) a\left(f_{n}\right)+\overline{\left\langle J^{*} k f_{m}, f_{n}\right\rangle} a^{*}\left(f_{m}\right) a^{*}\left(f_{n}\right)\right)
$$

Here:

- a^{*} / a - bosonic creation/annihilation operators (CCR);
- $h>0$ and $\mathrm{d} \Gamma(h)=\sum_{m, n \geq 1}\left\langle f_{m}, h f_{n}\right\rangle a^{*}\left(f_{m}\right) a\left(f_{n}\right)$
- $k: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ is an (unbounded) linear operator with $D(h) \subset D(k)$ (called pairing operator), $k^{*}=J^{*} k J^{*}$;
- $J: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ is the anti-unitary operator defined by

$$
J(f)(g)=\langle f, g\rangle, \quad \forall f, g \in \mathfrak{h} .
$$

Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

$$
\mathbb{H}=\mathrm{d} \Gamma(h)+\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle J^{*} k f_{m}, f_{n}\right\rangle a\left(f_{m}\right) a\left(f_{n}\right)+\overline{\left\langle J^{*} k f_{m}, f_{n}\right\rangle} a^{*}\left(f_{m}\right) a^{*}\left(f_{n}\right)\right)
$$

Here:

- a^{*} / a - bosonic creation/annihilation operators (CCR);
- $h>0$ and $\mathrm{d} \Gamma(h)=\sum_{m, n \geq 1}\left\langle f_{m}, h f_{n}\right\rangle a^{*}\left(f_{m}\right) a\left(f_{n}\right)$
- $k: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ is an (unbounded) linear operator with $D(h) \subset D(k)$ (called pairing operator), $k^{*}=J^{*} k J^{*}$;
- $J: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ is the anti-unitary operator defined by

$$
J(f)(g)=\langle f, g\rangle, \quad \forall f, g \in \mathfrak{h} .
$$

Operators of that type are important in physics!

- QFT (eg. scalar field with position dependent mass);
- many-body QM (effective theories like Bogoliubov or BCS).

The problem

Our goal:

find (prove existence) a unitary transformation \mathbb{U} on the Fock space, such that

$$
\mathbb{U} \mathbb{H} \mathbb{U}^{*}=E+\mathrm{d} \Gamma(\xi) .
$$

The problem

Our goal:

find (prove existence) a unitary transformation \mathbb{U} on the Fock space, such that

$$
\mathbb{U} \mathbb{H} \mathbb{U}^{*}=E+\mathrm{d} \Gamma(\xi) .
$$

Why?

- interpretation in terms of a non-interacting theory;
- access to spectral properties of \mathbb{H};

$$
\mathbb{H}=\mathrm{d} \Gamma(h)+\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle J^{*} k f_{m}, f_{n}\right\rangle a\left(f_{m}\right) a\left(f_{n}\right)+\overline{\left\langle J^{*} k f_{m}, f_{n}\right\rangle} a^{*}\left(f_{m}\right) a^{*}\left(f_{n}\right)\right)
$$

- Remark:

The above definition is formal! If k is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

$$
\mathbb{H}=\mathrm{d} \Gamma(h)+\frac{1}{2} \sum_{m, n \geq 1}\left(\left\langle J^{*} k f_{m}, f_{n}\right\rangle a\left(f_{m}\right) a\left(f_{n}\right)+\overline{\left\langle J^{*} k f_{m}, f_{n}\right\rangle} a^{*}\left(f_{m}\right) a^{*}\left(f_{n}\right)\right)
$$

- Remark:

The above definition is formal! If k is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

- More general approach: definition through quadratic forms!
- One-particle density matrices: $\gamma_{\Psi}: \mathfrak{h} \rightarrow \mathfrak{h}$ and $\alpha_{\Psi}: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$

$$
\left\langle f, \gamma_{\Psi} g\right\rangle=\left\langle\Psi, a^{*}(g) a(f) \Psi\right\rangle, \quad\left\langle J f, \alpha_{\Psi} g\right\rangle=\left\langle\Psi, a^{*}(g) a^{*}(f) \Psi\right\rangle, \quad \forall f, g \in \mathfrak{h}
$$

- A formal calculation leads to the expression

$$
\langle\Psi, \mathbb{H} \Psi\rangle=\operatorname{Tr}\left(h^{1 / 2} \gamma_{\Psi} h^{1 / 2}\right)+\Re \operatorname{Tr}\left(k^{*} \alpha_{\Psi}\right) .
$$

Unitary implementability

- Generalized creation and annihilation operators

$$
A(f \oplus J g)=a(f)+a^{*}(g), \quad A^{*}(f \oplus J g)=a^{*}(f)+a(g), \quad \forall f, g \in \mathfrak{h} ;
$$

- Let $\mathcal{V}: \mathfrak{h} \oplus \mathfrak{h}^{*} \rightarrow \mathfrak{h} \oplus \mathfrak{h}^{*}$, bounded;

Definition

A bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ is unitarily implemented by a unitary operator $\mathbb{U}_{\mathcal{V}}$ on Fock space if

$$
\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^{*}
$$

Unitary implementability

- Generalized creation and annihilation operators

$$
A(f \oplus J g)=a(f)+a^{*}(g), \quad A^{*}(f \oplus J g)=a^{*}(f)+a(g), \quad \forall f, g \in \mathfrak{h} ;
$$

- Let $\mathcal{V}: \mathfrak{h} \oplus \mathfrak{h}^{*} \rightarrow \mathfrak{h} \oplus \mathfrak{h}^{*}$, bounded;

Definition

A bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ is unitarily implemented by a unitary operator $\mathbb{U}_{\mathcal{V}}$ on Fock space if

$$
\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^{*}
$$

- Our goal: Find $\mathbb{U}_{\mathcal{V}}$ such that $\mathbb{U}_{\mathcal{V}} \mathbb{H}_{\mathcal{V}}^{*}=E+\mathrm{d} \Gamma(\xi)$.

Quadratic Hamiltonians as quantizations of block operators

Let

$$
\mathcal{A}:=\left(\begin{array}{cc}
h & k^{*} \\
k & J h J^{*}
\end{array}\right)
$$

Quadratic Hamiltonians as quantizations of block operators

Let

$$
\mathcal{A}:=\left(\begin{array}{cc}
h & k^{*} \\
k & J h J^{*}
\end{array}\right)
$$

and

$$
\mathbb{H}_{\mathcal{A}}:=\frac{1}{2} \sum_{m, n \geq 1}\left\langle F_{m}, \mathcal{A} F_{n}\right\rangle A^{*}\left(F_{m}\right) A\left(F_{n}\right) .
$$

Quadratic Hamiltonians as quantizations of block operators

Let

$$
\mathcal{A}:=\left(\begin{array}{cc}
h & k^{*} \\
k & J h J^{*}
\end{array}\right)
$$

and

$$
\mathbb{H}_{\mathcal{A}}:=\frac{1}{2} \sum_{m, n \geq 1}\left\langle F_{m}, \mathcal{A} F_{n}\right\rangle A^{*}\left(F_{m}\right) A\left(F_{n}\right)
$$

Then a formal calculation gives

$$
\mathbb{H}=\mathbb{H}_{\mathcal{A}}-\frac{1}{2} \operatorname{Tr}(h) .
$$

Thus, formally, \mathbb{H} can be seen as "quantization" of \mathcal{A}.

Diagonalization

If $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H}_{\mathcal{A}} \mathbb{U}_{\mathcal{V}}^{*}=\mathbb{H}_{\mathcal{V} \mathcal{A}^{*}}
$$

Diagonalization

If $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H}_{\mathcal{A}} \mathbb{U}_{\mathcal{V}}^{*}=\mathbb{H}_{\mathcal{V A \mathcal { A }}^{*}} .
$$

Thus, if \mathcal{V} diagonalizes \mathcal{A} :

$$
\mathcal{V} \mathcal{A} \mathcal{V}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & J \xi J^{*}
\end{array}\right)
$$

for some operator $\xi: \mathfrak{h} \rightarrow \mathfrak{h}$, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H} \mathbb{U}_{\mathcal{V}}^{*}=\mathbb{U}_{\mathcal{V}}\left(\mathbb{H}_{\mathcal{A}}-\frac{1}{2} \operatorname{Tr}(h)\right) \mathbb{U}_{\mathcal{V}}^{*}=\mathrm{d} \Gamma(\xi)+\frac{1}{2} \operatorname{Tr}(\xi-h)
$$

Diagonalization

If $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H}_{\mathcal{A}} \mathbb{U}_{\mathcal{V}}^{*}=\mathbb{H}_{\mathcal{V} \mathcal{A} \mathcal{V}^{*}}
$$

Thus, if \mathcal{V} diagonalizes \mathcal{A} :

$$
\mathcal{V} \mathcal{A} \mathcal{V}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & J \xi J^{*}
\end{array}\right)
$$

for some operator $\xi: \mathfrak{h} \rightarrow \mathfrak{h}$, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H} \mathbb{U}_{\mathcal{V}}^{*}=\mathbb{U}_{\mathcal{V}}\left(\mathbb{H}_{\mathcal{A}}-\frac{1}{2} \operatorname{Tr}(h)\right) \mathbb{U}_{\mathcal{V}}^{*}=\mathrm{d} \Gamma(\xi)+\frac{1}{2} \operatorname{Tr}(\xi-h)
$$

These formal arguments suggest it is enough to consider the diagonalization of block operators.

Questions

Question 1:

Questions

Question 1:

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$?

Questions

Question 1:

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$?
Question 2:

Questions

Question 1:

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$?

Question 2:

what are the conditions on \mathcal{A} so that there exists a \mathcal{V} that diagonalizes \mathcal{A} ?

Question 1 - symplectic transformations

Recall $A(f \oplus J g)=a(f)+a^{*}(g)$ and $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$.

- Conjugate and canonical commutation relations:

$$
A^{*}\left(F_{1}\right)=A\left(\mathcal{J} F_{1}\right), \quad\left[A\left(F_{1}\right), A^{*}\left(F_{2}\right)\right]=\left(F_{1}, \mathcal{S} F_{2}\right), \quad \forall F_{1}, F_{2} \in \mathfrak{h} \oplus \mathfrak{h}^{*}
$$

where

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathcal{J}=\left(\begin{array}{cc}
0 & J^{*} \\
J & 0
\end{array}\right)
$$

Question 1 - symplectic transformations

Recall $A(f \oplus J g)=a(f)+a^{*}(g)$ and $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$.

- Conjugate and canonical commutation relations:
$A^{*}\left(F_{1}\right)=A\left(\mathcal{J} F_{1}\right), \quad\left[A\left(F_{1}\right), A^{*}\left(F_{2}\right)\right]=\left(F_{1}, \mathcal{S} F_{2}\right), \quad \forall F_{1}, F_{2} \in \mathfrak{h} \oplus \mathfrak{h}^{*}$
where

$$
S=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathcal{J}=\left(\begin{array}{cc}
0 & J^{*} \\
J & 0
\end{array}\right)
$$

- $S=S^{-1}=S^{*}$ is unitary, $\mathcal{J}=\mathcal{J}^{-1}=\mathcal{J}^{*}$ is anti-unitary.
- Compatibility (wrt implementability) conditions

$$
\begin{equation*}
\mathcal{J} \mathcal{V} \mathcal{J}=\mathcal{V}, \quad \mathcal{V}^{*} S \mathcal{V}=S=\mathcal{V} S \mathcal{V}^{*} \tag{1}
\end{equation*}
$$

- Any bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ satisfying (1) is called a symplectic transformation.

Question 1 - implementability

- Symplecticity of \mathcal{V} implies

$$
\mathcal{J V} \mathcal{J}=\mathcal{V} \quad \Rightarrow \quad \mathcal{V}=\left(\begin{array}{cc}
U & J^{*} V J^{*} \\
V & J U J^{*}
\end{array}\right)
$$

Question 1 - implementability

- Symplecticity of \mathcal{V} implies

$$
\mathcal{J V J}=\mathcal{V} \quad \Rightarrow \quad \mathcal{V}=\left(\begin{array}{cc}
U & J^{*} V J^{*} \\
V & J U J^{*}
\end{array}\right)
$$

Fundamental result:

Shale's theorem ('62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$), if and only if

$$
\|V\|_{\mathrm{HS}}^{2}=\operatorname{Tr}\left(V^{*} V\right)<\infty .
$$

Question 1 - implementability

- Symplecticity of \mathcal{V} implies

$$
\mathcal{J} \mathcal{V}=\mathcal{V} \quad \Rightarrow \quad \mathcal{V}=\left(\begin{array}{cc}
U & J^{*} V J^{*} \\
V & J U J^{*}
\end{array}\right)
$$

Fundamental result:

Shale's theorem ('62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $\mathbb{U}_{\mathcal{V}} A(F) \mathbb{U}_{\mathcal{V}}^{*}=A(\mathcal{V} F)$), if and only if

$$
\|V\|_{\mathrm{HS}}^{2}=\operatorname{Tr}\left(V^{*} V\right)<\infty .
$$

$\mathbb{U}_{\mathcal{V}}$, a unitary implementer on the Fock space of a symplectic transformation \mathcal{V}, is called a Bogoliubov transformation.

Question 2 - example: commuting operators in ∞ dim

- $h>0$ and $k=k^{*}$ be commuting operators on $\mathfrak{h}=L^{2}(\Omega, \mathbb{C})$

$$
\mathcal{A}:=\left(\begin{array}{ll}
h & k \\
k & h
\end{array}\right)>0 \quad \text { on } \mathfrak{h} \oplus \mathfrak{h}^{*} .
$$

if and only if $G<1$ with $G:=|k| h^{-1}$.

- \mathcal{A} is diagonalized by the linear operator

$$
\mathcal{V}:=\sqrt{\frac{1}{2}+\frac{1}{2 \sqrt{1-G^{2}}}}\left(\begin{array}{cc}
1 & \frac{-G}{1+\sqrt{1-G^{2}}} \\
\frac{-G}{1+\sqrt{1-G^{2}}} & 1
\end{array}\right)
$$

in the sense that
$\mathcal{V} \mathcal{A V}^{*}=\left(\begin{array}{cc}\xi & 0 \\ 0 & \xi\end{array}\right) \quad$ with $\quad \xi:=h \sqrt{1-G^{2}}=\sqrt{h^{2}-k^{2}}>0$.

- \mathcal{V} satisfies the compatibility conditions and is bounded (and hence a symplectic transformation) iff $\|G\|=\left\|k h^{-1}\right\|<1$
- \mathcal{V} is unitarily implementable iff $k h^{-1}$ is Hilbert-Schmidt.

Historical remarks

- For $\operatorname{dim} \mathfrak{h}<\infty$ this follows from Williamson's Theorem ('36);
- Friedrichs ('50s) and Berezin ('60s): $h \geq \mu>0$ bounded with gap and k Hilbert-Schmidt;
- Grech-Seiringer ('13): $h>0$ with compact resolvent, k Hilbert-Schmidt;
- Lewin-Nam-Serfaty-Solovej ('15): $h \geq \mu>0$ unbounded, k Hilbert-Schmidt;
- Bach-Bru ('16): $h>0,\left\|k h^{-1}\right\|<1$ and $k h^{-s}$ is Hilbert-Schmidt for all $s \in[0,1+\epsilon]$ for some $\epsilon>0$.
- Our result: essentially optimal conditions

Theorem [Diagonalization of block operators]

(i) (Existence). Let $h: \mathfrak{h} \rightarrow \mathfrak{h}$ and $k: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ be (unbounded) linear operators satisfying $h=h^{*}>0, k^{*}=J^{*} k J^{*}$ and $D(h) \subset D(k)$. Assume that the operator $G:=h^{-1 / 2} J^{*} k h^{-1 / 2}$ is densely defined and extends to a bounded operator satisfying $\|G\|<1$. Then we can define the self-adjoint operator

$$
\mathcal{A}:=\left(\begin{array}{cc}
h & k^{*} \\
k & J h J^{*}
\end{array}\right)>0 \quad \text { on } \mathfrak{h} \oplus \mathfrak{h}^{*}
$$

by Friedrichs' extension. This operator can be diagonalized by a symplectic transformation \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ in the sense that

$$
\mathcal{V} \mathcal{A} \mathcal{V}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & J \xi J^{*}
\end{array}\right)
$$

for a self-adjoint operator $\xi>0$ on \mathfrak{h}. Moreover, we have

$$
\|\mathcal{V}\| \leq\left(\frac{1+\|G\|}{1-\|G\|}\right)^{1 / 4}
$$

Theorem [Diagonalization of block operators]

(ii) (Implementability). Assume further that G is Hilbert-Schmidt. Then \mathcal{V} is unitarily implementable and

$$
\|V\|_{\mathrm{HS}} \leq \frac{2}{1-\|G\|}\|G\|_{\mathrm{HS}}
$$

Theorem [Diagonalization of quadratic Hamiltonians]

Recall $G:=h^{-1 / 2} J^{*} k h^{-1 / 2}$. Assume, as before, that $\|G\|<1$ and G is Hilbert-Schmidt. Assume further that $k h^{-1 / 2}$ is
Hilbert-Schmidt. Then the quadratic Hamiltonian \mathbb{H}, defined before as a quadratic form, is bounded from below and closable, and hence its closure defines a self-adjoint operator which we still denote by \mathbb{H}. Moreover, if $\mathbb{U}_{\mathcal{V}}$ is the unitary operator on Fock space implementing the symplectic transformation \mathcal{V}, then

$$
\mathbb{U}_{\mathcal{V}} \mathbb{H} \mathbb{U}_{\mathcal{V}}^{*}=\mathrm{d} \Gamma(\xi)+\inf \sigma(\mathbb{H})
$$

and

$$
\inf \sigma(\mathbb{H}) \geq-\frac{1}{2}\left\|k h^{-1 / 2}\right\|_{\mathrm{HS}}^{2}
$$

Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J} B \mathcal{J}=-B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ such that $\mathcal{J U J}=\mathcal{U}$ and

$$
\mathcal{U} B \mathcal{U}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & -J \xi J^{*}
\end{array}\right)
$$

Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J} B \mathcal{J}=-B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ such that $\mathcal{J U J}=\mathcal{U}$ and

$$
\mathcal{U} B \mathcal{U}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & -J \xi J^{*}
\end{array}\right)
$$

Step 2. Apply Step 1 to $B=\mathcal{A}^{1 / 2} S \mathcal{A}^{1 / 2}$.

Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J} B \mathcal{J}=-B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ such that $\mathcal{J U J}=\mathcal{U}$ and

$$
\mathcal{U} B \mathcal{U}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & -J \xi J^{*}
\end{array}\right)
$$

Step 2. Apply Step 1 to $B=\mathcal{A}^{1 / 2} S \mathcal{A}^{1 / 2}$.
Step 3. Explicit construction of the symplectic transformation \mathcal{V} :

$$
\mathcal{V}:=\mathcal{U}|B|^{1 / 2} \mathcal{A}^{-1 / 2}
$$

Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J} B \mathcal{J}=-B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^{*}$ such that $\mathcal{J U J}=\mathcal{U}$ and

$$
\mathcal{U} B \mathcal{U}^{*}=\left(\begin{array}{cc}
\xi & 0 \\
0 & -J \xi J^{*}
\end{array}\right)
$$

Step 2. Apply Step 1 to $B=\mathcal{A}^{1 / 2} S \mathcal{A}^{1 / 2}$.
Step 3. Explicit construction of the symplectic transformation \mathcal{V} :

$$
\mathcal{V}:=\mathcal{U}|B|^{1 / 2} \mathcal{A}^{-1 / 2}
$$

Step 4. A detailed study of $\mathcal{V}^{*} \mathcal{V}=\mathcal{A}^{-1 / 2}|B| \mathcal{A}^{-1 / 2}$.

Thank you for your attention!

