Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations¹

P. T. Nam¹ M. Napiórkowski ¹ J. P. Solovej ²

¹Institute of Science and Technology Austria

²Department of Mathematics, University of Copenhagen

GDR Dynqua meeting, Grenoble

¹J. Funct. Anal. (in press)

Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

 $\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$

Here:

a*/a - bosonic creation/annihilation operators (CCR);
h > 0 and dΓ(h) = ∑_{m,n≥1}⟨f_m, hf_n⟩a*(f_m)a(f_n)
k : h → h* is an (unbounded) linear operator with D(h) ⊂ D(k) (called *pairing operator*), k* = J*kJ*;
J : h → h* is the anti-unitary operator defined by

$$J(f)(g) = \langle f, g \rangle, \quad \forall f, g \in \mathfrak{h}.$$

Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

 $\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$

Here:

a*/a - bosonic creation/annihilation operators (CCR);
h > 0 and dΓ(h) = ∑_{m,n≥1}⟨f_m, hf_n⟩a*(f_m)a(f_n)
k : h → h* is an (unbounded) linear operator with D(h) ⊂ D(k) (called *pairing operator*), k* = J*kJ*;
J : h → h* is the anti-unitary operator defined by

$$J(f)(g) = \langle f, g \rangle, \quad \forall f, g \in \mathfrak{h}.$$

Operators of that type are important in physics!

QFT (eg. scalar field with position dependent mass);

many-body QM (*effective theories* like Bogoliubov or BCS).

Our goal:

find (prove existence) a unitary transformation $\ensuremath{\mathbb{U}}$ on the Fock space, such that

 $\mathbb{UHU}^* = E + \mathrm{d}\Gamma(\xi).$

Our goal:

find (prove existence) a unitary transformation ${\mathbb U}$ on the Fock space, such that

```
\mathbb{UHU}^* = E + \mathrm{d}\Gamma(\xi).
```

Why?

- interpretation in terms of a non-interacting theory;
- access to spectral properties of \mathbb{H} ;

> ...

$$\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$$

Remark:

The above definition is formal! If k is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

$$\mathbb{H} = \mathrm{d}\Gamma(h) + \frac{1}{2} \sum_{m,n \ge 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \overline{\langle J^* k f_m, f_n \rangle} a^*(f_m) a^*(f_n) \right)$$

Remark:

The above definition is formal! If k is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

- More general approach: definition through quadratic forms!
- ▶ One-particle density matrices: $\gamma_{\Psi} : \mathfrak{h} \to \mathfrak{h}$ and $\alpha_{\Psi} : \mathfrak{h} \to \mathfrak{h}^*$

 $\left\langle f,\gamma_{\Psi}g\right\rangle = \left\langle \Psi,a^{*}(g)a(f)\Psi\right\rangle, \ \left\langle Jf,\alpha_{\Psi}g\right\rangle = \left\langle \Psi,a^{*}(g)a^{*}(f)\Psi\right\rangle, \quad \forall f,g\in\mathfrak{h}$

▶ A formal calculation leads to the expression

$$\langle \Psi, \mathbb{H}\Psi \rangle = \operatorname{Tr}(h^{1/2}\gamma_{\Psi}h^{1/2}) + \Re \operatorname{Tr}(k^*\alpha_{\Psi}).$$

Unitary implementability

Generalized creation and annihilation operators

 $A(f\oplus Jg)=a(f)+a^*(g),\quad A^*(f\oplus Jg)=a^*(f)+a(g),\quad \forall f,g\in \mathfrak{h};$

▶ Let
$$\mathcal{V} : \mathfrak{h} \oplus \mathfrak{h}^* \to \mathfrak{h} \oplus \mathfrak{h}^*$$
, bounded;

Definition

A bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^*$ is *unitarily implemented* by a unitary operator $\mathbb{U}_{\mathcal{V}}$ on Fock space if

 $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^*.$

Unitary implementability

Generalized creation and annihilation operators

 $A(f\oplus Jg)=a(f)+a^*(g),\quad A^*(f\oplus Jg)=a^*(f)+a(g),\quad \forall f,g\in \mathfrak{h};$

▶ Let
$$\mathcal{V} : \mathfrak{h} \oplus \mathfrak{h}^* \to \mathfrak{h} \oplus \mathfrak{h}^*$$
, bounded;

Definition

A bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^*$ is *unitarily implemented* by a unitary operator $\mathbb{U}_{\mathcal{V}}$ on Fock space if

 $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^*.$

• Our goal: Find $\mathbb{U}_{\mathcal{V}}$ such that $\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^* = E + d\Gamma(\xi)$.

Quadratic Hamiltonians as quantizations of block operators

Let

$$\mathcal{A} := \left(\begin{array}{cc} h & k^* \\ k & JhJ^* \end{array} \right)$$

Quadratic Hamiltonians as quantizations of block operators

Let

$$\mathcal{A} := \left(\begin{array}{cc} h & k^* \\ k & JhJ^* \end{array} \right)$$

and

$$\mathbb{H}_{\mathcal{A}} := \frac{1}{2} \sum_{m,n \ge 1} \langle F_m, \mathcal{A}F_n \rangle A^*(F_m) A(F_n)$$

Quadratic Hamiltonians as quantizations of block operators

Let

$$\mathcal{A} := \left(\begin{array}{cc} h & k^* \\ k & JhJ^* \end{array} \right)$$

and

$$\mathbb{H}_{\mathcal{A}} := \frac{1}{2} \sum_{m,n \ge 1} \langle F_m, \mathcal{A}F_n \rangle A^*(F_m) A(F_n).$$

Then a formal calculation gives

$$\mathbb{H} = \mathbb{H}_{\mathcal{A}} - \frac{1}{2}\operatorname{Tr}(h).$$

Thus, formally, $\mathbb H$ can be seen as "quantization" of $\mathcal A.$

Diagonalization

If $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$, then

 $\mathbb{U}_{\mathcal{V}}\mathbb{H}_{\mathcal{A}}\mathbb{U}_{\mathcal{V}}^{*}=\mathbb{H}_{\mathcal{V}\mathcal{A}\mathcal{V}^{*}}.$

If $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$, then

 $\mathbb{U}_{\mathcal{V}}\mathbb{H}_{\mathcal{A}}\mathbb{U}_{\mathcal{V}}^*=\mathbb{H}_{\mathcal{V}\mathcal{A}\mathcal{V}^*}.$

Thus, if \mathcal{V} diagonalizes \mathcal{A} :

$$\mathcal{VAV}^* = \left(egin{array}{cc} \xi & 0 \\ 0 & J\xi J^* \end{array}
ight)$$

for some operator $\xi:\mathfrak{h}\to\mathfrak{h}$, then

$$\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^{*} = \mathbb{U}_{\mathcal{V}}\left(\mathbb{H}_{\mathcal{A}} - \frac{1}{2}\operatorname{Tr}(h)\right)\mathbb{U}_{\mathcal{V}}^{*} = \mathrm{d}\Gamma(\xi) + \frac{1}{2}\operatorname{Tr}(\xi - h).$$

If $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$, then

 $\mathbb{U}_{\mathcal{V}}\mathbb{H}_{\mathcal{A}}\mathbb{U}_{\mathcal{V}}^*=\mathbb{H}_{\mathcal{V}\mathcal{A}\mathcal{V}^*}.$

Thus, if \mathcal{V} diagonalizes \mathcal{A} :

$$\mathcal{VAV}^* = \left(egin{array}{cc} \xi & 0 \\ 0 & J\xi J^* \end{array}
ight)$$

for some operator $\xi:\mathfrak{h}\to\mathfrak{h}$, then

$$\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^{*} = \mathbb{U}_{\mathcal{V}}\left(\mathbb{H}_{\mathcal{A}} - \frac{1}{2}\operatorname{Tr}(h)\right)\mathbb{U}_{\mathcal{V}}^{*} = \mathrm{d}\Gamma(\xi) + \frac{1}{2}\operatorname{Tr}(\xi - h).$$

These formal arguments suggest it is enough to consider the diagonalization of block operators.

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$?

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$?

Question 2:

what are the conditions on \mathcal{V} so that $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$?

Question 2:

what are the conditions on \mathcal{A} so that there exists a \mathcal{V} that diagonalizes \mathcal{A} ?

Question 1 - symplectic transformations

Recall $A(f \oplus Jg) = a(f) + a^*(g)$ and $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$.

Conjugate and canonical commutation relations:

 $A^{*}(F_{1}) = A(\mathcal{J}F_{1}), \quad [A(F_{1}), A^{*}(F_{2})] = (F_{1}, \mathcal{S}F_{2}), \quad \forall F_{1}, F_{2} \in \mathfrak{h} \oplus \mathfrak{h}^{*}$

where

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathcal{J} = \begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix}.$$

Question 1 - symplectic transformations

Recall $A(f \oplus Jg) = a(f) + a^*(g)$ and $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}^*_{\mathcal{V}} = A(\mathcal{V}F)$.

Conjugate and canonical commutation relations:

 $A^*(F_1) = A(\mathcal{J}F_1), \quad [A(F_1), A^*(F_2)] = (F_1, \mathcal{S}F_2), \quad \forall F_1, F_2 \in \mathfrak{h} \oplus \mathfrak{h}^*$

where

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathcal{J} = \begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix}$$

• $S = S^{-1} = S^*$ is unitary, $\mathcal{J} = \mathcal{J}^{-1} = \mathcal{J}^*$ is anti-unitary.

Compatibility (wrt implementability) conditions

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V}, \quad \mathcal{V}^*S\mathcal{V} = S = \mathcal{V}S\mathcal{V}^*.$$
 (1)

Any bounded operator V on h ⊕ h* satisfying (1) is called a symplectic transformation.

Question 1 - implementability

▶ Symplecticity of \mathcal{V} implies

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V} \qquad \Rightarrow \qquad \mathcal{V} = \begin{pmatrix} U & J^*VJ^* \\ V & JUJ^* \end{pmatrix}$$

Question 1 - implementability

Symplecticity of \mathcal{V} implies

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V} \qquad \Rightarrow \qquad \mathcal{V} = \begin{pmatrix} U & J^*VJ^* \\ V & JUJ^* \end{pmatrix}$$

Fundamental result:

Shale's theorem ('62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$), if and only if

$$\|V\|_{\mathrm{HS}}^2 = \mathrm{Tr}(V^*V) < \infty.$$

Question 1 - implementability

► Symplecticity of *V* implies

$$\mathcal{JVJ} = \mathcal{V} \qquad \Rightarrow \qquad \mathcal{V} = \begin{pmatrix} U & J^*VJ^* \\ V & JUJ^* \end{pmatrix}$$

Fundamental result:

Shale's theorem ('62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $\mathbb{U}_{\mathcal{V}}A(F)\mathbb{U}_{\mathcal{V}}^* = A(\mathcal{V}F)$), if and only if

$$\|V\|_{\mathrm{HS}}^2 = \mathrm{Tr}(V^*V) < \infty.$$

 $\mathbb{U}_{\mathcal{V}}$, a unitary implementer on the Fock space of a symplectic transformation \mathcal{V} , is called a *Bogoliubov transformation*.

Question 2 - example: commuting operators in ∞ dim

► h > 0 and $k = k^*$ be commuting operators on $\mathfrak{h} = L^2(\Omega, \mathbb{C})$ ► $\mathcal{A} := \begin{pmatrix} h & k \\ k & h \end{pmatrix} > 0$ on $\mathfrak{h} \oplus \mathfrak{h}^*$.

if and only if G < 1 with $G := |k|h^{-1}$.

 \blacktriangleright ${\cal A}$ is diagonalized by the linear operator

$$\mathcal{V} := \sqrt{\frac{1}{2} + \frac{1}{2\sqrt{1 - G^2}}} \left(\begin{array}{cc} 1 & \frac{-G}{1 + \sqrt{1 - G^2}} \\ \frac{-G}{1 + \sqrt{1 - G^2}} & 1 \end{array} \right)$$

in the sense that

$$\mathcal{VAV}^* = \begin{pmatrix} \xi & 0\\ 0 & \xi \end{pmatrix}$$
 with $\xi := h\sqrt{1-G^2} = \sqrt{h^2 - k^2} > 0.$

- ➤ V satisfies the compatibility conditions and is bounded (and hence a symplectic transformation) iff ||G|| = ||kh⁻¹|| < 1</p>
- \blacktriangleright V is unitarily implementable iff kh^{-1} is Hilbert-Schmidt.

Historical remarks

- ▶ For dim $\mathfrak{h} < \infty$ this follows from Williamson's Theorem ('36);
- ► Friedrichs ('50s) and Berezin ('60s): h ≥ µ > 0 bounded with gap and k Hilbert-Schmidt;
- Grech-Seiringer ('13): h > 0 with compact resolvent, k
 Hilbert-Schmidt;
- ▶ Lewin-Nam-Serfaty-Solovej ('15): h ≥ µ > 0 unbounded, k Hilbert-Schmidt;
- ▶ Bach-Bru ('16): h > 0, $||kh^{-1}|| < 1$ and kh^{-s} is Hilbert-Schmidt for all $s \in [0, 1 + \epsilon]$ for some $\epsilon > 0$.
- ► Our result: essentially optimal conditions

Theorem [Diagonalization of block operators]

(i) (Existence). Let $h: \mathfrak{h} \to \mathfrak{h}$ and $k: \mathfrak{h} \to \mathfrak{h}^*$ be (unbounded) linear operators satisfying $h = h^* > 0$, $k^* = J^*kJ^*$ and $D(h) \subset D(k)$. Assume that the operator $G := h^{-1/2}J^*kh^{-1/2}$ is densely defined and extends to a bounded operator satisfying $\|G\| < 1$. Then we can define the self-adjoint operator

$$\mathcal{A} := \left(egin{array}{cc} h & k^* \ k & JhJ^* \end{array}
ight) > 0 \quad ext{on } \mathfrak{h} \oplus \mathfrak{h}^*$$

by Friedrichs' extension. This operator can be diagonalized by a symplectic transformation $\mathcal V$ on $\mathfrak h\oplus\mathfrak h^*$ in the sense that

$$\mathcal{VAV}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & J\xi J^* \end{array}\right)$$

for a self-adjoint operator $\xi > 0$ on \mathfrak{h} . Moreover, we have

$$\|\mathcal{V}\| \le \left(\frac{1+\|G\|}{1-\|G\|}\right)^{1/4}$$

Theorem [Diagonalization of block operators]

(ii) (Implementability). Assume further that G is Hilbert-Schmidt. Then \mathcal{V} is unitarily implementable and

$$\|V\|_{\mathrm{HS}} \le \frac{2}{1 - \|G\|} \|G\|_{\mathrm{HS}}.$$

Theorem [Diagonalization of quadratic Hamiltonians]

Recall $G := h^{-1/2}J^*kh^{-1/2}$. Assume, as before, that ||G|| < 1 and G is Hilbert-Schmidt. Assume further that $kh^{-1/2}$ is Hilbert-Schmidt. Then the quadratic Hamiltonian \mathbb{H} , defined before as a quadratic form, is bounded from below and closable, and hence its closure defines a self-adjoint operator which we still denote by \mathbb{H} . Moreover, if $\mathbb{U}_{\mathcal{V}}$ is the unitary operator on Fock space implementing the symplectic transformation \mathcal{V} , then

 $\mathbb{U}_{\mathcal{V}}\mathbb{H}\mathbb{U}_{\mathcal{V}}^* = \mathrm{d}\Gamma(\xi) + \inf \sigma(\mathbb{H})$

and

$$\inf \sigma(\mathbb{H}) \geq -\frac{1}{2} \|kh^{-1/2}\|_{\mathrm{HS}}^2.$$

Step 1. - fermionic case. If *B* is a self-adjoint and such that $\mathcal{J}B\mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J}\mathcal{U}\mathcal{J} = \mathcal{U}$ and

$$\mathcal{U}B\mathcal{U}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & -J\xi J^* \end{array}\right).$$

Step 1. - fermionic case. If *B* is a self-adjoint and such that $\mathcal{J}B\mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J}\mathcal{U}\mathcal{J} = \mathcal{U}$ and

$$\mathcal{U}B\mathcal{U}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & -J\xi J^* \end{array}\right).$$

Step 2. Apply Step 1 to $B = \mathcal{A}^{1/2} S \mathcal{A}^{1/2}$.

Step 1. - fermionic case. If *B* is a self-adjoint and such that $\mathcal{J}B\mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J}\mathcal{U}\mathcal{J} = \mathcal{U}$ and

$$\mathcal{U}B\mathcal{U}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & -J\xi J^* \end{array}\right).$$

Step 2. Apply Step 1 to $B = \mathcal{A}^{1/2} S \mathcal{A}^{1/2}$.

Step 3. Explicit construction of the symplectic transformation \mathcal{V} :

$$\mathcal{V} := \mathcal{U}|B|^{1/2} \mathcal{A}^{-1/2}.$$

Step 1. - fermionic case. If *B* is a self-adjoint and such that $\mathcal{J}B\mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J}\mathcal{U}\mathcal{J} = \mathcal{U}$ and

$$\mathcal{U}B\mathcal{U}^* = \left(\begin{array}{cc} \xi & 0\\ 0 & -J\xi J^* \end{array}\right).$$

Step 2. Apply Step 1 to $B = \mathcal{A}^{1/2} S \mathcal{A}^{1/2}$.

Step 3. Explicit construction of the symplectic transformation \mathcal{V} :

$$\mathcal{V} := \mathcal{U}|B|^{1/2} \mathcal{A}^{-1/2}.$$

Step 4. A detailed study of $\mathcal{V}^*\mathcal{V} = \mathcal{A}^{-1/2}|B|\mathcal{A}^{-1/2}$.

Thank you for your attention!