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Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

H=dr()+ 5 3 (kS fadaCfmalf) + (TR f Fub () ()
m,n>1
Here:
» a*/a - bosonic creation/annihilation operators (CCR);

> h>0and dU(h) = 3, si{fms hfn)a* (fm)a(fn)
» k:bh— b*is an (unbounded) linear operator with

D(h) C D(k) (called pairing operator), k* = J*kJ*;
» J:bh — b* is the anti-unitary operator defined by

J(f)(g) ={f.9), Vfgeh.
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Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

H=dr() 45 3 (kS fadalfalf) + (TR F T () ()

m,n>1
Here:

» a*/a - bosonic creation/annihilation operators (CCR);

> h>0and dU(h) = 3, si{fms hfn)a* (fm)a(fn)
» k:bh— b*is an (unbounded) linear operator with

D(h) C D(k) (called pairing operator), k* = J*kJ*;
» J:bh — b* is the anti-unitary operator defined by

J(f)(g) ={f.9), Vfgeh.

Operators of that type are important in physics!

» QFT (eg. scalar field with position dependent mass);
» many-body QM (effective theories like Bogoliubov or BCS).
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The problem

Our goal:
find (prove existence) a unitary transformation U on the Fock
space, such that

UHU* = E +dI'(¢).
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The problem

Our goal:
find (prove existence) a unitary transformation U on the Fock
space, such that
UHU* = E +dI'(§).

Why?

> interpretation in terms of a non-interacting theory;

B access to spectral properties of H;

> ...
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H=dr(h)+ 3 Y (kS fada(fmalf) + (TR o () (/)

m,n>1

» Remark:
The above definition is formal!l If k is not Hilbert-Schmidt,
then it is difficult to show that the domain is dense.
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H=dr(h)+ 3 Y (kS fada(fmalf) + (TR o () (/)

m,n>1

» Remark:
The above definition is formal!l If k is not Hilbert-Schmidt,
then it is difficult to show that the domain is dense.

» More general approach: definition through quadratic
forms!

» One-particle density matrices: vy : h — § and ayg : h — b*

(fiveg) =(¥,a*(9)a(f)¥), (Jf,awg) =(¥,a*(9)a*(f)¥), Vfgeh

» A formal calculation leads to the expression

(U, HE) = Tr(h?ygh'/?) + R Tr(k* o).
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Unitary implementability

» Generalized creation and annihilation operators

A(fodg) = a(f)+a*(g), A*(f&Jg) =a"(f)+alg), Yf,ge€b;

> Let V:bhdBbh* > hPbh* bounded,

Definition

A bounded operator V on § @ h* is unitarily implemented by a
unitary operator Uy, on Fock space if

Uy A(F)U% = A(VF), VF €bhah*
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Unitary implementability

» Generalized creation and annihilation operators

A(fodg) = a(f)+a*(g), A*(f&Jg) =a"(f)+alg), Yf,ge€b;

> Let V:bhdBbh* > hPbh* bounded,

Definition

A bounded operator V on § @ h* is unitarily implemented by a
unitary operator Uy, on Fock space if

Uy A(F)U% = A(VF), VF €bhah*

» Our goal: Find Uy such that UyHU;, = E + dI'(§).
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Quadratic Hamiltonians as quantizations of block operators

Let
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Quadratic Hamiltonians as quantizations of block operators

Let
hoo ok
A= < k JhJ* )
and )
Hy = 2mzn;1<Fm,AFn)A (E)A(Fy)
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Quadratic Hamiltonians as quantizations of block operators

Let
h k*
A= < k JhJ* )
1

Hy = > (Fon, AF,) A% (F) A(F).

m,n>1

and

Then a formal calculation gives
1
H=H4 — §Tr(h).

Thus, formally, H can be seen as "quantization” of A.
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Diagonalization

If UpA(F)U3%, = A(VF), then

UpH AU, = Hy gp=.
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Diagonalization

If UpA(F)U3%, = A(VF), then
UypH AU, = Hy g~

Thus, if V diagonalizes A:

«_ (& 0
VAV _<o J§J*>

for some operator £ : h — b, then

UyHUS, = Uy (HA - ;T&“(h)> Up = dU(e) + 5 Tr(E — h).

Marcin Napiérkowski Quadratic Hamiltonians and Bogoliubov transformations



Diagonalization

If UpA(F)U3%, = A(VF), then
UypH AU, = Hy g~

Thus, if V diagonalizes A:

«_ (& 0
VAV = < 0 JeJ* >
for some operator £ : h — b, then
1 1
UyHUy, = Uy (HA ~3 Tr(h)> Uy, =dI'(¢) + 3 Tr(€ — h).

These formal arguments suggest it is enough to consider the
diagonalization of block operators.
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Questions

Question 1:
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Question 1:

what are the conditions on V so that Uy A(F)U3, = A(VF)?
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Question 1:
what are the conditions on V so that Uy A(F)U3, = A(VF)?

Question 2:
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Question 1:
what are the conditions on V so that Uy A(F)U3, = A(VF)?
Question 2:

what are the conditions on A so that there exists a V that
diagonalizes A?
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Question 1 - symplectic transformations

Recall A(f @ Jg) = a(f) + a*(g) and Uy A(F)U3, = A(VF).
» Conjugate and canonical commutation relations:

A* () = A(TFR), [A(R), A(Fp)] = (F1,SF2), VI, F € hob®

(1 0 (0 J
S_<o —1>’ j_<J 0)'

where
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Question 1 - symplectic transformations

Recall A(f @ Jg) = a(f) + a*(g) and Uy A(F)U3, = A(VF).
» Conjugate and canonical commutation relations:

A* () = A(TFR), [A(R), A(Fp)] = (F1,SF2), VI, F € hob®

1 0 o J*
=1 0). o=(8 %)
» S =S5"1=5%isunitary, 7 = J ! = J* is anti-unitary.
» Compatibility (wrt implementability) conditions

where

JVT =V, VSV =S8 = VSV~ (1)

» Any bounded operator V on h @ h* satisfying (1) is called a
symplectic transformation.

Marcin Napiérkowski Quadratic Hamiltonians and Bogoliubov transformations



Question 1 - implementability

» Symplecticity of V implies

u JVJ*
JVIT =V = V-(V JUJ*>
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Question 1 - implementability

» Symplecticity of V implies

u JVJ*
JVIT =V = V-(V JUJ*>

Fundamental result:

Shale’s theorem ('62)

A symplectic transformation V is unitarily implementable (i.e.
UyA(F)U3, = A(VF)), if and only if

IV]4s = Te(V*V) < .
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Question 1 - implementability

» Symplecticity of V implies

u JVJ*
JVIT =V = V_<V JUJ*>

Fundamental result:

Shale’s theorem ('62)

A symplectic transformation V is unitarily implementable (i.e.
UyA(F)U3, = A(VF)), if and only if

IV]4s = Te(V*V) < .

Uy, a unitary implementer on the Fock space of a symplectic
transformation V), is called a Bogoliubov transformation.
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Question 2 - example: commuting operators in co dim

» h >0 and k = k* be commuting operators on h = L?(2,C)
h k X
A'_(kz h)>0 on h & h*.

if and only if G < 1 with G := |k|h~L.
» A is diagonalized by the linear operator

V = -4t —— e 1+V1-G2
2 W=\ gt !

in the sense that

ww*:<5 0) with &:=hv1-G2=Vh2—k2>0.

0 ¢
» V satisfies the compatibility conditions and is bounded (and
hence a symplectic transformation) iff ||G|| = [[kh~ || < 1

» V is unitarily implementable iff kh~! is Hilbert-Schmidt.
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Historical remarks

» For dimbh < oo this follows from Williamson's Theorem ('36);

» Friedrichs ('50s) and Berezin ('60s): h > u > 0 bounded with
gap and k Hilbert-Schmidt;

» Grech-Seiringer ('13): h > 0 with compact resolvent, k
Hilbert-Schmidt;

» Lewin-Nam-Serfaty-Solovej ('15): h > u > 0 unbounded, k
Hilbert-Schmidt;

» Bach-Bru ('16): h >0, |[kh™t|| <1 and kh™5 is
Hilbert-Schmidt for all s € [0,1 + €] for some € > 0.

» Our result: essentially optimal conditions
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Theorem [Diagonalization of block operators]

(i) (Existence). Let h: h — b and k : h — h* be (unbounded)
linear operators satisfying h = h* > 0, k* = J*kJ* and

D(h) € D(k). Assume that the operator G := h~'/2.J*kh=1/% is
densely defined and extends to a bounded operator satisfying
IIG|| < 1. Then we can define the self-adjoint operator

h k* "
'A':<k th*>>0 onhdh

by Friedrichs’ extension. This operator can be diagonalized by a
symplectic transformation V on h & h* in the sense that

L (€ 0
vavi= (5,00

for a self-adjoint operator £ > 0 on h. Moreover, we have

V| < (HHG”)IM.
BN (€]
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Theorem [Diagonalization of block operators]

(ii) (Implementability). Assume further that G is
Hilbert-Schmidt. Then V is unitarily implementable and

2
Vilas < —— =7 1Gllus-
1-[c]
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Theorem [Diagonalization of quadratic Hamiltonians]

Recall G := h='/2J*kh~'/2. Assume, as before, that |G| < 1 and
G is Hilbert-Schmidt. Assume further that kh /2 is
Hilbert-Schmidt. Then the quadratic Hamiltonian H, defined
before as a quadratic form, is bounded from below and closable,
and hence its closure defines a self-adjoint operator which we still
denote by H. Moreover, if Uy is the unitary operator on Fock
space implementing the symplectic transformation V), then

UyHU;, = dT'(€) + inf o (H)

and 1
inf o(H) 2 — [[kh /2 s.
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Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that
JBJ = —B, then there exists a unitary operator If on ) @ h*
such that JUJ = U and

s_(& 0
UBU (0 _Jgj*>.
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Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that
JBJ = —B, then there exists a unitary operator If on ) @ h*
such that JUJ = U and

s_(& 0
UBU (0 _Jgj*>.

Step 2. Apply Step 1 to B = AY/25A41/2,
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Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that
JBJ = —B, then there exists a unitary operator If on ) @ h*
such that JUJ = U and

s_(& 0
UBU (0 _Jgj*>.

Step 2. Apply Step 1 to B = AY/25A41/2,

Step 3. Explicit construction of the symplectic transformation V:

V:i=U|B|'? A2
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Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that
JBJ = —B, then there exists a unitary operator If on ) @ h*
such that JUJ = U and

s_(& 0
UBU (0 —J§J*>‘

Step 2. Apply Step 1 to B = AY/25A41/2,

Step 3. Explicit construction of the symplectic transformation V:

V:i=U|B|'? A2

Step 4. A detailed study of V*V = A~1/2|B|A~1/2,
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Thank you for your attention!
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