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Introduction
Isolated and hyperbolic systems in General Relativity

Center of mass and foliations

The center of mass in Newtonian gravity

Field equation −∆u = 4πρ in R3,

u ∈ C2(R3) is the gravitational potential, ρ : R3 → R+ the
mass density, ρ ∈ L1(R3).

Total mass: m =

∫
R3
ρ(~x)dµδ.

If ρ 6= 0, the center of mass ~c is

~c =
1
m

∫
R3
~x ρ(~x)dµδ.

Remark:
∫
R3 ~x ρ(~x)dµδ may not converge for ρ ∈ L1.
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Isolated and hyperbolic systems in General Relativity

Center of mass and foliations

General Relativity

Spacetime: manifold (N 4, γ) where γ is a Lorentzian metric,
i.e. sgn(γ) = (−,+,+,+),
Einstein equations: Gµν = 8πTµν ,
Gµν := Rµν − 1

2Rγµν + Λγµν : Einstein tensor of γ,
Tµν : Energy-momentum tensor.
Schwarzschild spacetime (Nm, γm) with mass m > 0:

Nm = R×
(
R3 \ {0,m/2}

)
,

γm = −
(
1− m

2r
1 + m

2r

)2

dt2 +

(
1 +

m
2r

)4
δ,

where δ = dx2 + dy2 + dz2 is the Euclidean metric.
Spherical symmetry... but (t,~0) /∈ Nm.
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Center of mass and foliations

Initial data sets in General Relativity

Let M3 ↪→ (N 4, γ) spacelike; induced geometric data (g , k),

g is the induced (Riemannian) metric on M and k is the
extrinsic curvature tensor.
γ solves Einstein equations ⇒ (g , k) satisfies the Constraints

R(g)− 2Λ− |k|2g + (trgk)2 = 16πTnn

∇i (kij − (trgk)gij) = 8πTnj .

Choquet-Bruhat’s Theorem (1952)
If (M3, g , k) satisfies the Constraints, then there exists a spacetime
(N 4, γ) solution of the Einstein equations Gµν = 8πTµν in which
(M3, g , k) embeds as a spacelike hypersurface.
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Center of mass and foliations

Asymptotically Euclidean initial data

Initial data set (M, g , k) asymptotically Euclidean if there is

a chart φ : M \ K → R3...
... such that

|φ∗g − δ| ≤ Cr−1, |∇φ∗g | ≤ Cr−2, |∇2φ∗g | ≤ Cr−3,

|φ∗k| ≤ Cr−2, |∇φ∗k| ≤ Cr−3.

Figure : The end M \ K .
Figure : The image on R3.
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Center of mass and foliations

Asymptotically hyperbolic initial data

Initial data set (M, g , k) asymptotically hyperbolic if there is
a chart φ : M \ K → H3 ' B1(0) ⊂ R3...
... such that

|φ∗g − b| ≤ C(1− r)3, . . . ,

|φ∗k| ≤ C(1− r)3, . . . .

Hyperbolic space H3 = (B1(0), b), with b =

( 2
1− r2

)2
δ.

The reference spacetime is Anti-de Sitter spacetime, and
Λ = −3.
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Center of mass and foliations

A Hamiltonian definition for isolated systems

Defined for asymptotically Euclidean (M, g , k) with positive
mass (Beig-Ó Murchadha 1987, Szabados 2006).

Mass: m(φ, g) =
1

16π lim
r→∞

∫
Sr

(div e − d tre)

(
~x
r

)
dSr ,

where e := φ∗g − δ.
Center of mass: ~c(φ, g) = (c1, c2, c3) ∈ R3, where

c i =
1

16πm lim
r→∞

∫
Sr

[
x i (div e − d tre)

−e(∇x i , ·) + tre dx i
] (~x

r

)
dSr .
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Center of mass and foliations

Foliations at infinity and CMC center for isolated systems

Theorem (Huisken-Yau, 1998)
If (M, g , k) asymptotically Euclidean with m > 0, there exists a
unique foliation by constant mean curvature 2-spheres of

M \ K =
⋃

H∈(0,H1)

ΣH ,

where ΣH ' S2 and has mean curvature H ∈ (0,H1).

φ(ΣH) ⊂ R3 with center: ~cH(φ, g) =
1
|ΣH |g

∫
φ(ΣH )

~x dS.

lim
H→0

~cH(φ, g) = ~c(φ, g) (Huang 2008, Eichmair-Metzger,...)

Advantage of this approach: the foliation {ΣH}H is
geometric, i.e. does not depend at all on φ !
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Center of mass and foliations

Foliations at infinity and CMC center for isolated systems

Figure : Hypersurfaces φ(ΣH) and their affine centers in R3.
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Center of mass and foliations

Foliations and CMC center for hyperbolic systems

For hyperbolic systems, the mass is a vector p(φ, g) ∈ R3,1. It is
positive if it is timelike, future-directed: p0 >

√∑3
i=1(pi )2.

Theorem (Neves-Tian, 2010)
If (M, g , k) asymptotically hyperbolic with positive mass vector,
there exists a unique foliation by constant mean curvature
2-spheres of

M \ K =
⋃

H∈(2,H2)

ΣH ,

where ΣH ' S2 and has mean curvature H ∈ (2,H2).

φ(ΣH) ⊂ H3 not affine, but H3 embeds in R3,1, affine.
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φ(ΣH) ⊂ H3 not affine, but H3 embeds in R3,1, affine.

The affine center zH ∈ R3,1 of φ(ΣH) can be normalized as
cH(φ, g) =

zH
|zH |R3,1

∈ H3.

Theorem (Cederbaum, C., Sakovich 2015)
If (M, g , k) satisfies the assumptions of Neves-Tian’s Theorem, we
have the convergence in H3

lim
H→2

cH(φ, g) =
p(φ, g)

|p(φ, g)|R3,1
.
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Thanks!
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