A mathematical study of the GW0 method for computing electronic excited states of molecules

Éric Cancès, David Gontier, Gabriel Stoltz

Université Paris EST, CERMICS, École des Ponts ParisTech and INRIA
Department of Mathematics, ETH Zürich

GDR DynQua, Grenoble
February 2nd, 2015
Goal: compute the electronic excitation energies of a finite electronic system (molecule).

Nuclear configuration (Born-Oppenheimer approximation): \(\{ \mathbf{R}_k \}_{1 \leq k \leq N} \):

\[
\nu_{\text{ext}}(\mathbf{r}) := \sum_{k=1}^{M} \frac{-z_k}{|\mathbf{r} - \mathbf{R}_k|}.
\]

Electronic problem with \(N \)-electrons

\[
H_N \Psi := \left(-\frac{1}{2} \sum_{i=1}^{N} \Delta r_i + \sum_{1 \leq i < j \leq N} \frac{1}{|r_i - r_j|} + \sum_{i=1}^{N} \nu_{\text{ext}}(r_i) \right) \Psi(r_1, \ldots, r_N) = E \Psi(r_1, \ldots, r_N).
\]

\(|\Psi(r_1, \ldots, r_N)|^2\) is the probability density of observing electron 1 at \(r_1 \), electron 2 at \(r_2 \), ...

Pauli principle for fermions: \(\forall p \in S_N, \; \Psi(r_{p(1)}, \ldots, r_{p(N)}) = \epsilon(p) \Psi(r_1, \ldots, r_N) \).

State space

\[
\Psi \in \mathcal{H}_N := \bigwedge_{1}^{N} \mathcal{H}_1, \quad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}).
\]

If \(N \leq Z := \sum_{k=1}^{M} z_k \), then \(\sigma(H_N) \) is as follows:

\[
\begin{align*}
E_N^0 & \quad E_N^1 & \quad E_N^2 & \cdots & \quad \sigma_{\text{ess}} \\
\end{align*}
\]

\(\sum_N \)

Ground state: \(\Psi_N^0 \in \mathcal{H}_N \) such that \(\| \Psi_N^0 \| = 1 \) and \(H_N \Psi_N^0 = E_N^0 \Psi_N^0 \).

Problem: \(\mathcal{H}_N \subset L^2(\mathbb{R}^{3N}) \) is a huge space. (Curse of dimensionality)

\[
H_2 \quad (N = 2) \quad H_2O \quad (N = 10) \quad C_8H_{10}N_4O_2 \quad (N = 102)
\]

\(\Rightarrow \) Several approximations were proposed in the last decades.

- Density functional theory (DFT): for ground state properties only
- Quantum Monte Carlo methods: idem
- Wavefunction methods: scales from \(N_b^6 \) (CISD) to \(N_b! \) (full CI)
- Time-dependent DFT (TDDFT): does not work well for extended systems
- Green’s function method: in this talk, GW.
The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the electronic excitation energies of a system \implies quantities of the form

$$E_N^0 - E_{N+1}^k \quad \text{(gain of an electron)}$$

Inverse photoemission spectroscopy (IPES)

System with N electrons

System with $N + 1$ electrons

(HVZ theorem)

electronic excitation

$$E_N^0 \quad \Sigma_N$$

$$E_{N+1}^0 \quad E_{N+1}^1 \quad \Sigma_{N+1}$$
The GW method (L. Hedin. Phys. Rev. 1965)

To calculate the **electronic excitation energies** of a system \Longrightarrow quantities of the form

$$E_N^0 - E_{N+1}^k \quad \text{(gain of an electron)} \quad \text{and} \quad E_N^0 - E_{N-1}^k \quad \text{(loss of an electron)}.$$

Photoemission spectroscopy (PES)

- System with N electrons
- System with $N - 1$ electrons

Σ_N (HVZ theorem)

Electronic excitation

E_N^0, E_{N-1}^0, E_{N-1}^1, Σ_{N-1}
Definition of the Particle Green’s function in the time domain

Fock space

\[\mathbb{F} := \bigoplus_{N=0}^{+\infty} \mathcal{H}_N, \quad \mathcal{H}_0 = \mathbb{C}, \quad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}), \quad \mathcal{H}_N = \bigwedge^N \mathcal{H}_1. \]

Annihilation and creation operators

\[a \in \mathcal{B}(\mathcal{H}_1, \mathcal{B}(\mathbb{F})), \quad a^\dagger \in \mathcal{B}(\mathcal{H}_1, \mathcal{B}(\mathbb{F})), \]

\[\forall \phi \in \mathcal{H}_1, \quad a(\phi) : \mathcal{H}_N \to \mathcal{H}_{N-1}, \quad a^\dagger(\phi) : \mathcal{H}_N \to \mathcal{H}_{N+1}, \quad a^\dagger(\phi) = (a(\phi))^*, \]

\[\forall \Psi \in \mathcal{H}_N, \quad (a(\phi)\Psi)(r_1, \ldots, r_{N-1}) = \sqrt{N} \int_{\mathbb{R}^3} \phi(r) \Psi(r, r_1, \ldots, r_{N-1}) \, dr. \]

One-body particle Green’s function (in the time domain)

\[\forall \tau \in \mathbb{R}, \forall f, g \in \mathcal{H}_1, \quad \langle g | G_p(\tau) | f \rangle = -i \Theta(\tau) \left\langle \Psi^0_N \left| a(g)e^{-i\tau(H_{N+1}-E_0^N)}a^\dagger(f) \right| \Psi^0_N \right\rangle. \]

Annihilation and creation operators (bis)

\[A^*_+ \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_{N+1}) : f \mapsto a^\dagger(f) | \Psi^0_N \rangle, \quad A_+ = (A^*_+)^* \in \mathcal{B}(\mathcal{H}_{N+1}, \mathcal{H}_1). \]

One-body particle Green’s function (in the time domain) (bis)

\[\forall \tau \in \mathbb{R}, \quad G_p(\tau) = -i \Theta(\tau) A_+ e^{-i\tau(H_{N+1}-E_0^N)} A^*_+. \]
Definition of the Particle Green’s function in the frequency domain

\[\forall \tau \in \mathbb{R}, \quad G_p(\tau) = -i \Theta(\tau) A_+ e^{-i \tau (H_{N+1} - E_0^N)} A^*_+. \]

Normalization convention for the time-Fourier transform

\[\forall f \in L^1(\mathbb{R}_\tau, X), \quad X \text{ Banach space}, \quad [\mathcal{F}_T f](\omega) = \hat{f}(\omega) = \int_{-\infty}^{+\infty} f(\tau) e^{i \omega \tau} d\tau. \]

Fourier representation of the one-body particle Green’s function

\[\hat{G}_p(\omega) = (\mathcal{F}_T G_p)(\omega), \quad \hat{G}_p \in H^{-1}(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1)). \]

Key point

The support of the distribution \(\text{Im} \left(\hat{G}_p \right) \) is contained in the particle electronic excitation set \(S_p := \sigma(H_{N+1} - E_0^N) \).

- Particle electronic excited energies can be recovered from \(\hat{G}_p \),
- \(\hat{G}_p \) is highly irregular.
Laplace transform of the Green’s function For \(z \in U = \{ z \in \mathbb{C}, \text{Im} \ (z) > 0 \} \), define

\[
\tilde{G}_p(z) := \int_0^\infty G_p(\tau)e^{iz\tau} \, d\tau.
\]

Remark

- \(\tilde{G}_p \) is an analytical continuation of \(\hat{G}_p \) on \(U \) (Titchmarsh’s theory).
- This continuation can be extended to \(\mathbb{C} \setminus S_p \).

\[
\forall z \in \mathbb{C} \setminus S_p, \quad \tilde{G}_p(z) = A_+ \left(\frac{1}{z - (H_{N+1} - E_0^N)} \right) A_+^*.
\]
Definition of the one-body hole Green’s function

Annihilation and creation operators (ter)

\[A^- \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_{N-1}) : f \mapsto a(\bar{f})|\psi^0_N\rangle, \quad A^*^- \in \mathcal{B}(\mathcal{H}_{N-1}, \mathcal{H}_1). \]

In the time domain

\[
\forall \tau \in \mathbb{R}, \quad G_h(\tau) = i\Theta(-\tau)A^*^- e^{i\tau(H_{N-1} - E^0_N)} A^-.
\]

Properties

From the hole Green’s function, we can recover the following quantities:

- **One-body electronic ground-state density matrix:**

\[
\gamma^0_N = -iG_h(0^-) = A^*^- A^- \\
\gamma^0_N(\mathbf{r}, \mathbf{r}') = N \int_{\mathbb{R}^{3(N-1)}} \psi^0_N(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \psi^0_N(\mathbf{r}', \mathbf{r}_2, \cdots, \mathbf{r}_N) \, d\mathbf{r}_2 \cdots d\mathbf{r}_N,
\]

- **Electronic ground state density**

\[
\rho^0_N(\mathbf{r}) = N \int_{\mathbb{R}^{3(N-1)}} |\psi^0_N(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 \, d\mathbf{r}_2 \cdots d\mathbf{r}_N,
\]

- **Ground state energy** (Galiskii-Migdal formula)

\[
E^0_N = \frac{1}{2} \mathrm{Tr}_{\mathcal{H}_1} \left[\left(\frac{d}{d\tau} - i \left(-\frac{1}{2} \Delta + \nu_{\text{ext}} \right) \right) G_h(\tau) \right|_{\tau=0^-}.
\]
The hole Green’s function in the frequency domain

\[\hat{G}_h(\omega) = (\mathcal{F}_T G_h)(\omega), \quad \hat{G}_h \in H^{-1}(\mathbb{R}\omega, \mathcal{B}(\mathcal{H})). \]

Key point

The support of the distribution \(\text{Im}(\hat{G}_h) \) is contained in the hole electronic excitation set \(S_h := \sigma(E^0_N - H^0_{N-1}) \).

In the complex frequency domain

\[\forall z \in \mathbb{C} \setminus S_h, \quad \hat{G}_h(z) = A^* \left(\frac{1}{z - (E^0_N - H^0_{N-1})} \right) A_- . \]
Definition of the total Green’s function

Assumption: Stability condition

\[2E_N^0 < E_{N+1}^0 + E_{N-1}^0. \]

Chemical potential \(\mu \)

\[E_N^0 - E_{N-1}^0 < \mu < E_{N+1}^0 - E_N^0. \]

One-body total Green’s function in the complex frequency domain

\[\forall z \in \mathbb{C} \setminus (S_h \cup S_p), \quad \tilde{G}(z) = \tilde{G}_h(z) + \tilde{G}_p(z). \]
Green’s function for non-interacting systems

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta r_i + V(r_i) \right) \text{ on } \mathcal{H}_N, \quad h_1 = -\frac{1}{2} \Delta + V \text{ on } \mathcal{H}_1.$$

Assumptions

- h_1 has at least N negative eigenvalues $\varepsilon_1 \leq \varepsilon_2 \leq \cdots \leq \varepsilon_N$,
- Stability condition: it holds $\varepsilon_N < \varepsilon_{N+1}$.

Chemical potential of the non-interacting system μ_0

$$\varepsilon_N < \mu_0 < \varepsilon_{N+1}.$$

Ground state of the non-interacting system

$$\Phi_N^0 = \phi_1 \wedge \cdots \wedge \phi_N, \quad \gamma_{0,N}^0 = \mathbb{1}_{(-\infty,\mu_0)}(h_1) = \sum_{i=1}^{N} |\phi_i\rangle\langle\phi_i|.$$

Green’s function of the non-interaction system

$$\widetilde{G}_{0,h}(z) = \gamma_{0,N}^0(z - h_1)^{-1}, \quad \widetilde{G}_{0,p}(z) = (1 - \gamma_{0,N}^0)(z - h_1)^{-1}, \quad \widetilde{G}_0(z) = (z - h_1)^{-1}.$$
Dynamical Hamiltonian

Non-interacting system: \(\tilde{G}_0(z) = (z - h_1)^{-1} \).

Interacting system: \(\tilde{G}(z) = (z - \tilde{H}(z))^{-1} \), \(\tilde{H}(z) \): dynamical Hamiltonian.

- Eigenvalues = quasi-energies,
- Eigenfunctions = quasi-particles.

Lemma

For all \(z \in \mathbb{C} \setminus (S_h \cup S_p) \), \(\tilde{H}(z) = z - G(z)^{-1} \) is a well-defined closed operator on \(\mathcal{H}_1 \), with dense domain \(\tilde{D}(z) \) such that \(\tilde{D}(z) \subset H^2(\mathbb{R}^3) \).

Assumption

- The chemical potential of the interacting system and of the non-interacting system can be chosen equal:

\[
\mu = \mu_0.
\]

Self-energy

\(\forall z \in U \cup U \cup U (\mu - a, \mu + b) \), \(\tilde{\Sigma}(z) = \tilde{H}(z) - h_1 = \tilde{G}_0(z)^{-1} - \tilde{G}(z)^{-1} \) (Dyson equation).

\[
\tilde{H}(z) = h_1 + \tilde{\Sigma}(z).
\]
Dyson equation on the imaginary axis $\mu + i\mathbb{R}$

\[
\forall \omega \in \mathbb{R}, \quad \tilde{\Sigma} (\mu + i\omega) = \tilde{G}_0 (\mu + i\omega)^{-1} - \tilde{G} (\mu + i\omega)^{-1}
\]

Road map

- Construct a good non-interacting model for $\tilde{G}_0 (\mu + i\omega)$
 - Hartree Hamiltonian (in the original paper)
 - Kohn-Sham Hamiltonian (DFT)
- Use an approximation of the self-energy $\tilde{\Sigma} \approx \tilde{\Sigma}^{GW}$ on the axis $\mu + i\mathbb{R}$.
- Define $\tilde{G}^{GW} (\mu + i\omega)$ from the Dyson equation with $\tilde{\Sigma}^{GW} (\mu + i\omega)$

\[
\tilde{G}^{GW} (\mu + i\omega) = \left(\tilde{G}_0 (\mu + i\omega)^{-1} - \tilde{\Sigma}^{GW} (\mu + i\omega) \right)^{-1} = \left(\mu + i\omega - h_1 - \tilde{\Sigma}^{GW} (\mu + i\omega) \right)^{-1}.
\]
Choice of \((\Sigma^{GW}, \tilde{G}^{GW}) \)? The Hedin’s equations (L. Hedin. Phys. Rev., 139, 1965.)

Kernel of a space-time operator \(A \)

\[
A(12) = A(r_1, t_1; r_2, t_2) = [A(t_1 - t_2)](r_1, r_2).
\]

The Hedin’s equations

- **Dyson equation**

 \[
 G(12) = G_0(12) + \int d(34) G_0(13) \Sigma(34) G(42),
 \]

- **Self-energy**

 \[
 \Sigma(12) = i \int d(34) G(13) W(41) \Gamma(32; 4),
 \]

- **Screened interaction**

 \[
 W(12) = v_c(12) + \int d(34) v_c(13) P(34) W(42),
 \]

- **Irreducible polarization**

 \[
 P(12) = -i \int d(34) G(13) G(41) \Gamma(34; 2),
 \]

- **Vertex function**

 \[
 \Gamma(12; 3) = \delta(12) \delta(13) + \int d(4567) \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(67; 3).
 \]
The GW^0 equations:

Find $\left(\Sigma^{GW^0}, G^{GW^0} \right)$ such that

- Dyson equation

\[
G^{GW^0}(12) = G_0(12) + \int d(34) G_0(13) \Sigma^{GW^0}(34) G^{GW^0}(42),
\]

- Self-energy

\[
\Sigma^{GW^0}(12) = i G^{GW^0}(12) W^0(21).
\]

W^0 is the (GW^0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW^0 scheme

\[
\begin{array}{c}
G_0 \\
\xrightarrow{G^{k=0} = G_0} \\
\xrightarrow{G^{k=0}} \\
\xrightarrow{W^0}
\end{array}
\]

Initialization
The GW^0 equations:
Find $\left(\Sigma^{GW^0}, G^{GW^0} \right)$ such that

- Dyson equation

$$G^{GW^0}(12) = G_0(12) + \int d(34) G_0(13) \Sigma^{GW^0}(34) G^{GW^0}(42),$$

- Self-energy

$$\Sigma^{GW^0}(12) = i G^{GW^0}(12) W^0(21).$$

W^0 is the (GW^0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW^0 scheme

\[
\begin{array}{c}
G_0 \quad G^k \quad \text{Iteration k, step 1} \quad W^0 \\
\downarrow \quad \Sigma^k \quad \downarrow
\end{array}
\]
The GW^0 equations:
Find $\left(\Sigma^{GW^0}, G^{GW^0}\right)$ such that

- **Dyson equation**

 \[G^{GW^0}(12) = G_0(12) + \int d(34)G_0(13)\Sigma^{GW^0}(34)G^{GW^0}(42), \]

- **Self-energy**

 \[\Sigma^{GW^0}(12) = iG^{GW^0}(12)W^0(21). \]

W^0 is the (GW^0 approximation of the) dynamically screened operator.

Flow chart of the self-consistent GW^0 scheme

\[G_0 \rightarrow G^{k+1}_{G0} \quad \text{Iteration k, step 2} \]

Dyson equation

\[\Sigma^k \]
The GW\(^0\) equations:
Find \((\Sigma^{GW\(^0\)}, G^{GW\(^0\)})\) such that

- Dyson equation
 \[
 G^{GW\(^0\)}(12) = G_0(12) + \int d(34) G_0(13) \Sigma^{GW\(^0\)}(34) G^{GW\(^0\)}(42),
 \]

- Self-energy
 \[
 \Sigma^{GW\(^0\)}(12) = i G^{GW\(^0\)}(12) W^0(21).
 \]

\(W^0\) is the \((GW\(^0\) approximation of the) dynamically screened operator.

Next step: give a sense to these equations

- Define the multiplication \(A(12)B(21)\),
- Study the operator \(W^0\),
- Transform the GW\(^0\) equations on the time axis \(\mathbb{R}_\tau\) into formally equivalent GW\(^0\) equations on the imaginary frequency axis \(\mu + i\mathbb{R}_\omega\).
The kernel product (infinite dimensional Hadamard product)

How to define an operator \(C \) such that \(C(r, r') = A(r, r')B(r', r) \)?

Associated quadratic form

\[
\forall f, g \in \mathcal{H}_1, \quad \langle f|C|g \rangle_{\mathcal{H}_1} = \iint_{\mathbb{R}^2} \overline{f}(r)C(r, r')g(r')drdr'
= \iint_{\mathbb{R}^2} A(r, r')g(r')B(r', r)\overline{f}(r)drdr' = \text{Tr}_{\mathcal{H}_1}(AgB\overline{f})
\]

Definition

The kernel-product of \(A \) and \(B \) is the operator \(A \odot B \), defined by the quadratic form

\[
\forall f, g \in \mathcal{H}_1, \quad \langle f|A \odot B|g \rangle = \text{Tr}_{\mathcal{H}_1}(AgB\overline{f})
\]

Lemma

If \(A \in \mathcal{B}(\mathcal{H}_1) \) and \(B \) is such that,

\[
\forall f, g \in \mathcal{H}_1, \quad gB\overline{f} \in \mathfrak{S}_1(\mathcal{H}_1) \quad \text{with} \quad \|gB\overline{f}\|_{\mathfrak{S}_1} \lesssim \|f\|_{\mathcal{H}_1}\|g\|_{\mathcal{H}_1},
\]

then \(A \odot B \) is a well-defined bounded operator on \(\mathcal{H}_1 \).
The dynamically screened operator W

The Coulomb operator

In the vacuum, a time-dependent charge $\delta \rho(r, t)$ creates a potential

$$\delta V(r', t) = \int_{\mathbb{R}^3} \frac{1}{|r - r'|} \delta \rho(r, t) \, dr,$$

or

$$\delta V = \delta_0(t) v_c(\delta \rho).$$

$$v_c(r, r') = \frac{1}{|r - r'|} \quad \text{Coulomb operator.}$$

The dynamically screened operator

In a molecule, a time-dependent charge $\delta \rho(r, t)$ creates a potential

$$\delta V(r', t) = \int_{\mathbb{R}^3} \int_{-\infty}^{t} W(rt, r't') \delta \rho(r, t') \, dr \, dt'$$

$$= \delta_0(t) v_c(\delta \rho) + \int_{\mathbb{R}^3} \int_{-\infty}^{t} W_c(rt, r't') \delta \rho(r, t') \, dr \, dt'.$$

Screening effect
The dynamically screened operator W^0
Calculated from the Hartree Hamiltonian:

$$W^0(\tau) = \delta_0(\tau) v_c + W_c^0(\tau).$$

GW^0 approximation of the self-energy

$$\Sigma^{\text{app}}(12) = i G^{\text{app}}(12) W^0(21).$$

$$\Sigma^{\text{app}}(r, r'; \tau) = i \delta_0(\tau) G^{\text{app}}_h(r, r'; 0^-) v_c(r, r') + i G^{\text{app}}(r, r'; \tau) W^0_c(r', r; -\tau)$$

$$= -\frac{\gamma^{\text{app}}_{N}(r, r')}{|r - r'|} \delta_0(\tau) + i G^{\text{app}}(r, r'; \tau) W^0_c(r', r; -\tau).$$

In practice

$$\Sigma^{\text{app}}(\tau) = K_x \delta_0(\tau) + i G^{\text{app}}(\tau) \otimes W^0_c(-\tau), \quad \text{with} \quad K_x(r, r') := -\frac{\gamma^{\text{app}}_{0,N}(r, r')}{|r - r'|}.$$
Analytical continuation method

Equation

\[\forall \tau \in \mathbb{R}, \quad \Sigma^{\text{app}}(\tau) := K_x \delta_0(\tau) + i G^{\text{app}}(\tau) \otimes W_c^0(-\tau) \]

is formally equivalent to

\[\Sigma^{\text{app}}(\mu_0 + i \omega) = K_x - \frac{1}{2\pi} \int_{-\infty}^{+\infty} G^{\text{app}}(\mu_0 + i(\omega + \omega')) \otimes \tilde{W}_c^0(i\omega') d\omega'. \]

The \(GW^0 \) equations in the imaginary frequency axis

Find \(G^{GW^0} \in L^\infty(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1)) \), solution to the system

\[
\begin{cases}
\Sigma^{GW^0}(\mu_0 + i \omega) = K_x - \frac{1}{2\pi} \int_{-\infty}^{+\infty} G^{GW^0}(\mu_0 + i\omega + \omega') \otimes \tilde{W}_c^0(i\omega') d\omega', \\
G^{GW^0}(\mu_0 + i \omega) = \left[\mu_0 + i \omega - \left(h_1 + \Sigma^{GW^0}(\mu_0 + i \omega) \right) \right]^{-1},
\end{cases}
\]

with

\[K_x(r, r') = -\frac{\gamma_{\mu, \nu}^0(r, r')}{|r - r'|}. \]
\[
\begin{align*}
\Sigma_{GW^0}(\mu_0 + i\omega) &= K_x - \frac{1}{2\pi} \int_{-\infty}^{+\infty} G_{GW^0}(\mu_0 + i(\omega + \omega')) \odot \tilde{W}_c^0(i\omega') \, d\omega', \\
G_{GW^0}(\mu_0 + i\omega) &= \left[\mu_0 + i\omega - \left(h_1 + \Sigma_{GW^0}(\mu_0 + i\omega) \right) \right]^{-1}
\end{align*}
\]

Lemma

*For all \(\tilde{G}_{app}(\mu_0 + i\cdot) \in L^2(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1)) * and all \(\omega \in \mathbb{R}_\omega *, the operator

\[
\Sigma_{c_{app}}(\mu_0 + i\omega) = -\frac{1}{2\pi} \int_{-\infty}^{+\infty} \tilde{G}_{app}(\mu_0 + i(\omega + \omega')) \odot \tilde{W}_c^0(i\omega') \, d\omega'
\]

is a well-defined bounded operator on \(\mathcal{H}_1 \).*

Problem

*For \(\tilde{G}_{app}(\mu_0 + i\cdot) close to \(\tilde{G}_0(\mu_0 + i\cdot) in L^\infty(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1)) * , is the operator

\[
\mu_0 + i\omega - \left(h_1 + \Sigma_{app}(\mu_0 + i\omega) \right)
\]

invertible?*
The GW^0 approximation in a perturbative regime

\[
\begin{cases}
\Sigma_{\text{GW}^0}^\lambda (\mu_0 + i\omega) = K_x - \frac{1}{2\pi} \int_{-\infty}^{+\infty} G_{\text{GW}^0}^\lambda (\mu_0 + i(\omega + \omega')) \odot \tilde{W}_c^0(i\omega') d\omega',
\end{cases}
\]

\[
\begin{aligned}
G_{\text{GW}^0}^\lambda (\mu_0 + i\omega) &= \left[\mu_0 + i\omega - \left(h_1 + \lambda \Sigma_{\text{GW}^0}^\lambda (\mu_0 + i\omega) \right) \right]^{-1}.
\end{aligned}
\]

Theorem (Éric Cancès, DG, Gabriel Stoltz)

- There exists $\lambda_* > 0$ such that, for all $0 \leq \lambda \leq \lambda_*$, there exists a unique solution $\tilde{G}_{\text{GW}^0}^\lambda$ to the problem (GW^0_λ) which is close to \tilde{G}_0.
- Moreover, the self-consistent procedure starting from \tilde{G}_0 converges toward $G_{\text{GW}^0}^\lambda$ in $L^2(\mathbb{R}_\omega, \mathcal{B}(\mathcal{H}_1))$.

David Gontier

The GW^0 method
Current results

- The fundamental objects \((G, G_0, \Sigma, W_0)\) involved in \(GW^0\) formalism are mathematically well-defined.
- Some of their properties have been rigorously proved.
- The \(GW^0\) equations are well-posed in a perturbative regime.

Future work

- Perform the same work for periodic systems.
 - with Éric Cancès and Gabriel Stoltz
- Study the speed of convergence with respect to numerical parameters.
- Understand the Bethe-Salpeter equations.

Reference