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Context and motivation

The Einstein equations: (M, g) 4-D Lorentzian manifold with
Rµν − 1

2gµνR = 8πTµν . In vacuum: Rµν = 0.

Tensorial equations.
Highly non-linear.

Exact solutions: The Minkowski space-time (flat), the Schwarzschild and
the Kerr black holes, etc ...

One of the most famous results in General Relativity:

The stability of Minkowski space: by Christodoulou and Klainerman, 1993
(526 pages).

One of the biggest conjectures in General Relativity:

The stability of the Kerr black holes.

Toy model: �gφ = ∇α∇αφ = 0.

does not admit stationary solutions on the Schwarzschild black hole.
Yang-Mills admits stationary solutions on Schwarzschild black hole.
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Set up

(M, g) : 4-D globally hyperbolic Lorentzian manifold.

G : compact Lie group.

G : Lie algebra of G .

< , > : positive definite Ad-invariant scalar product on G.

The Yang-Mills potential: in a given system of coordinates, G-valued
one form A on M

A = Aαdx
α

The gauge covariant derivative of a G-valued tensor Ψ is defined as:

D(A)
α Ψ = ∇αΨ + [Aα,Ψ]

∇α : the space-time covariant derivative of Levi-Civita on (M, g).

∇αΨ : the tensorial covariant derivative of an n-tensor Ψ:

(∇Y Ψ)(f .X1, . . . ,Xn) = f .(∇Y Ψ)(X1, . . . ,Xn)
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The tensorial second order derivative is defined such that:

(∇Z∇f .Y Ψ)(X1, . . . ,Xn) = f .(∇Z∇Y Ψ)(X1, . . . ,Xn)

The Yang-Mills curvature is a G-valued two form:

F = Fαβdx
α ∧ dxβ

obtained by commutating two gauge covariant derivatives of a
G-valued tensor Ψ = Ψa1a2.....ai .....:

(D(A)
α D

(A)
β −D

(A)
β D(A)

α )Ψa1...ai ... =
∑
i

Rai
γ
αβΨ....γ.... + [Fαβ,Ψ]

→ Fαβ = ∇αAβ −∇βAα + [Aα,Aβ]
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The Yang-Mills equations

The Yang-Mills Lagrangian is given by

L = −1

4
< Fαβ,F

αβ >

The action principle gives

D(A)
α Fαβ = 0 (1)

On the other hand, we have the Bianchi identities:

D(A)
α Fµν + D(A)

µ Fνα + D(A)
ν Fαµ = 0 (2)

The equations (1) and (2) form the Yang-Mills equations.

Maxwell equations

The Maxwell equations correspond to the abelian case where [ , ] = 0, and
therefore D(A) = ∇.
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Einstein Equations in a Yang-Mills form

At a point p of the space-time, one can choose a normal frame, which
means a frame such that g(eα, eβ)(p) = diag(−1, 1, . . . , 1), and
∂
∂σg(eα, eβ)(p) = 0. Cartan formalism consists in defining the connection
1-form at p,

(A)αβ(X ) = g(∇X eβ, eα)

If we define the Lie bracket [Aµ,Aν ] as

([Aµ,Aν ])αβ = (Aµ)α
λ (Aν)λβ − (Aν)α

λ (Aµ)λβ

and,

(Fµν)αβ =
(
∇µAν −∇νAµ + [Aµ,Aν ]

)
αβ

then, we have

(Fµν)αβ = Rαβµν

Well known proposition:

Rµν = 0 => (D(A)µFµν)αβ = 0
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Example : Spherically symmetric SU(2) Yang-Mills fields

G = SU(2) : real Lie group of 2x2 unitary matrices of determinant 1.

G : the Lie algebra associated to G is su(2) : the antihermitian
traceless 2x2 matrices.

In the exterior of the Schwarzschild black hole, the metric can be written
as:

ds2 = −(1− 2m

r
)dt2 +

1

(1− 2m
r )

dr2 + r2(dθ2 + sin2(θ)dφ2)

Ansatz:

A(t, r) = W (t, r)τ1dθ + W (t, r) sin(θ)τ2dφ+ cos(θ)τ3dφ

where τi , i ∈ {1, 2, 3}: matrices which form a real basis of su(2) = G.
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If we define,

r∗ = r + 2m log(r − 2m)

then, we have:

ds2 = −(1− 2m

r
)dt2 + (1− 2m

r
)dr∗2 + r2(dθ2 + sin2(θ)dφ2)

The conserved Yang-Mills energy is given by:

EF (t) =

∫ ∞
r=2m

∫
S2

(|∂tW |2 + (|∂r∗W |2 +
(1− 2m

r )[W 2 − 1]2

2r2
)dr∗dσ2

The Yang-Mills equations translate on W as:

→ ∂2
tW − ∂2

r∗W =
(1− 2m

r )

r2
W [1−W 2]
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The global existence of Yang-Mills fields on curved
space-times

Relies on gauge covariant wave equation with source term:

D(A)αD(A)
α Fµν = RµγF

γ
ν + RνγFµ

γ + 2RγµναF
γα + 2[Fµ

α,Fνα]

Eardley-Moncrief: fundamental solution for the wave equation +
Crönstrum gauge → Initial data ∼ H1

loc(F ) on Minkowski.

Chruściel-Shatah: Friedlander parametrix + Crönstrum gauge →
H2
loc(F ) on curved space-times.

Klainerman-Rodnianski: Kirchoff Sobolev parametrix → gauge
independent proof of non-blow up → H0

loc(F ) on Minkowski.

Klainerman-Rodnianski parametrix + Grönwall inequalities to control the
energies EF (t) and ED(A)F (t) → Grönwall type inequality on |F | on a small
time interval depending on the point p
→ Gauge independent proof → H1

loc(F ) on curved space-times.
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The statement

Let (M, g) be a curved 4-dimensional Lorentzian manifold. We assume
that g is sufficiently smooth, and M is globally hyperbolic. We know by
then that there exist a smooth vector field ∂

∂t such that M is foliated by
Cauchy hypersurfaces Σt . Let t̂ be a unit timelike vector field orthogonal
to Σt . We assume there exists Cloc(t) ∈ L1

loc , such that:

|πµν(t̂)|L∞
loc(Σt )

= |1
2

[∇µt̂ν +∇ν t̂µ]|
L∞
loc(Σt )

≤ Cloc(t) (3)

Define:

E t̂
F (t = t0) =

∫
Σt=t0

1

2
|F |2.dVΣ

E t̂
D(A)F

(t = t0) =

∫
Σt=t0

1

2
|D(A)F |2.dVΣ

Sari Ghanem (Institut Fourier) Yang-Mills on Black Hole Space-Times Grenoble, February 03, 2016 11 / 18



The theorem

Theorem

If E t̂
F (t = t0) <∞ and E t̂

D(A)F
(t = t0) <∞ then, the norm of the

Yang-Mills curvature Fµν of local solutions defined for all t ∈ [t0,T ) will
not blow-up in time t, i.e. at each point q of the space-time at time
tq = T, we have

lim
p→q, tp<T

|F |(p) <∞ , (4)

also,

lim
t→T , t<T

E t̂
F (t) <∞ , (5)

and

lim
t→T , t<T

E t̂
D(A)F

(t) <∞ . (6)
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The proof

Let Jp be a fixed G-valued anti-symmetric 2-tensor at p, and let λαβ be
the unique 2-tensor field along N−(p), that verifies the linear transport
equation:

D
(A)
L λαβ +

1

2
trχλαβ = 0

(sλαβ)(p) = Jαβ(p)

Tp

LL

tp
_

tp

t
p

N
_

(p)

p
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An adaptation of the Kirchoff-Sobolev type representation
formula of Klainerman-Rodnianski

The scalar product is Ad-invariant: < [A,B],C >=< A, [B,C ] >.
This yields to an adaptation of the parametrix to gauge covariant
derivatives:

4π < Jαβ,F
αβ > (p) = −

∫
N−τ (p)

< λαβ,�
(A)
g Fαβ > +Ctp−τ

+

∫
N−τ (p)

< ∆̂(A)λαβ + 2ζaD
(A)
a λαβ +

1

2
µ̂λαβ

+[FLL, λαβ]− 1

2
Rα

γ
LLλγβ −

1

2
Rβ

γ
LLλαγ ,F

αβ >

where Ctp−τ depends on the value of F on Σtp−τ .

where ∆̂(A)λαβ is the induced Laplacian on S2, of λαβ
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The established Grönwall type inequality

||F ||2L∞(Σp
t ) . 1 +

∫ t

tp−τ
||F ||2L∞(Σp

t
)dt +

∫ t

tp−τ

∫ t∗

tp−τ
||F ||2L∞(Σp

t
)dtdt

∗

p

q

q

tp

t

tp
_

t

p

Sari Ghanem (Institut Fourier) Yang-Mills on Black Hole Space-Times Grenoble, February 03, 2016 15 / 18



On the Yang-Mills fields on the Schwarzschild black hole

Results on black holes:

Dafermos-Rodnianski → decay for Φ scalar solution of �gΦ = 0

Blue → decay for Maxwell fields → separation of the middle
components Φ0 which satisfies �gΦ0 = linear term(Φ0)

Andersson-Blue → Kerr metrics.

Goal: get rid of the separation → not pass through the scalar wave
equation.

Problem: getting a Morawetz type estimate.

Stationary solutions are counter-examples for this estimate − > one
needs to find a way to eliminate them in the proof.

In the work of Blue, and Andersson-Blue, the problem is avoided by
subtracting them, using the linearity of the Maxwell equations, and
the fact that the only stationary solution is the Coulomb solution.
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Spherically symmetric SU(2) Yang-Mills fields on the
Schwarzschild black hole

∂2
tW − ∂2

r∗W =
(1− 2m

r )

r2
W [1−W 2]

Wn : family of stationary solutions.
W0 = ±1 (zero Yang-Mills curvature) is stable. Wn, n 6= 0 : unstable.

”Theorem” [G-Häfner]

There exists ε > 0 such that

if EF (t = t0) < ε

if some weighted energy is finite at t = t0

=>then, the local energy decays in time t in the exterior of the black hole,
i.e. for all r1, r2, such that 2m < r1 ≤ r2, we have at least

EF (r1 ≤ r ≤ r2)(t) ≤ C (r1, r2)

t
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Thank you!
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