Weyl Laws for manifolds with cusps.

Some theorems funded by Université d'Orsay and CRM (Montréal).

What is a manifold with cusps ?

$$
\operatorname{vol}(M)<\infty
$$

(M, g) is complete.

Exact hyperbolic cusp

$$
\begin{aligned}
& g=\frac{d y^{2}+d \theta^{2}}{y^{2}} \\
& K=-1
\end{aligned}
$$

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u \tag{*}
\end{equation*}
$$

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u . \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to $(*)$ with $E \leqslant \lambda^{2}$, on a cusp manifold?

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to $(*)$ with $E \leqslant \lambda^{2}$, on a cusp manifold?
Why cusp manifolds ?

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u . \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to $(*)$ with $E \leqslant \lambda^{2}$, on a cusp manifold ?
Why cusp manifolds ?

- If (M, g) is a compact riemannian $(d+1)$-manifold, we have the Weyl law:

$$
\#\left\{\text { solutions with } E \leqslant \lambda^{2}\right\} \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1} .
$$

The right hand side still makes sense

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to (*) with $E \leqslant \lambda^{2}$, on a cusp manifold?
Why cusp manifolds ?

- If (M, g) is a compact riemannian $(d+1)$-manifold, we have the Weyl law:

$$
\#\left\{\text { solutions with } E \leqslant \lambda^{2}\right\} \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1} .
$$

The right hand side still makes sense

- On a non-compact manifold, in general, counting estimates for solutions of $(*)$ involve the dimension of the trapped set. Cusp manifold are special since the trapped set has full dimension.

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to (*) with $E \leqslant \lambda^{2}$, on a cusp manifold?
Why cusp manifolds ?

- If (M, g) is a compact riemannian $(d+1)$-manifold, we have the Weyl law:

$$
\#\left\{\text { solutions with } E \leqslant \lambda^{2}\right\} \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1} .
$$

The right hand side still makes sense

- On a non-compact manifold, in general, counting estimates for solutions of $(*)$ involve the dimension of the trapped set. Cusp manifold are special since the trapped set has full dimension.
- Hyperbolic cusps are simple models of finite volume ends.

The free 1 body stationary problem: find solutions to the equation

$$
\begin{equation*}
-\Delta u=E u \tag{*}
\end{equation*}
$$

Problem: How many solutions are there to (*) with $E \leqslant \lambda^{2}$, on a cusp manifold?
Why cusp manifolds ?

- If (M, g) is a compact riemannian $(d+1)$-manifold, we have the Weyl law:

$$
\#\left\{\text { solutions with } E \leqslant \lambda^{2}\right\} \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1} .
$$

The right hand side still makes sense

- On a non-compact manifold, in general, counting estimates for solutions of $(*)$ involve the dimension of the trapped set. Cusp manifold are special since the trapped set has full dimension.
- Hyperbolic cusps are simple models of finite volume ends.
- They appear in other contexts (Arithmetics - recall the Riemann zeta function, geometry of the Teichmüller space).

What should one count ?
The spectrum of $-\Delta$ on $L^{2}(M)$ splits into $\sigma_{p p}=\left\{\mu_{0}=0<\mu_{1}<\ldots\right\}$ and $\sigma_{a c}=\left[d^{2} / 4,+\infty[\right.$.

What should one count ?
The spectrum of $-\Delta$ on $L^{2}(M)$ splits into $\sigma_{p p}=\left\{\mu_{0}=0<\mu_{1}<\ldots\right\}$ and $\sigma_{a c}=\left[d^{2} / 4,+\infty[\right.$.

Let

$$
N_{p p}(\lambda)=\#\left\{\mu_{i} \mid \mu_{i} \leqslant d^{2} / 4+\lambda^{2}\right\}
$$

What should one count ?

The spectrum of $-\Delta$ on $L^{2}(M)$ splits into $\sigma_{p p}=\left\{\mu_{0}=0<\mu_{1}<\ldots\right\}$ and $\sigma_{a c}=\left[d^{2} / 4,+\infty[\right.$.

Let

$$
N_{p p}(\lambda)=\#\left\{\mu_{i} \mid \mu_{i} \leqslant d^{2} / 4+\lambda^{2}\right\} .
$$

Theorem[Colin de Verdière, 83] $N_{p p}$ is a constant for generic smooth metrics.
\Longrightarrow Counting L^{2} solutions to (*) may not be very interesting.

What should one count ?

The spectrum of $-\Delta$ on $L^{2}(M)$ splits into $\sigma_{p p}=\left\{\mu_{0}=0<\mu_{1}<\ldots\right\}$ and $\sigma_{a c}=\left[d^{2} / 4,+\infty[\right.$.

Let

$$
N_{p p}(\lambda)=\#\left\{\mu_{i} \mid \mu_{i} \leqslant d^{2} / 4+\lambda^{2}\right\}
$$

Theorem[Colin de Verdière, 83] $N_{p p}$ is a constant for generic smooth metrics.
\Longrightarrow Counting L^{2} solutions to $(*)$ may not be very interesting. But there is a continuum of non- L^{2} solutions to (*)! How do we count the continuous spectrum ?

The spectral counting function
Remark For a compact manifold,

$$
N_{p p}(\lambda)=\operatorname{Tr} \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right) .
$$

The spectral counting function
Remark For a compact manifold,

$$
N_{p p}(\lambda)=\operatorname{Tr} \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right) .
$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda>0$.

The spectral counting function
Remark For a compact manifold,

$$
N_{p p}(\lambda)=\operatorname{Tr} \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right) .
$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda>0$. However, as $\tau \rightarrow \infty$,
$\operatorname{Tr}\left[\mathbf{1}\left(y \leqslant e^{\tau}\right) \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right)\right]=\kappa \tau \frac{\lambda}{\pi}+\left[N_{p p}(\lambda)-S(\lambda)+C\right]+o(1)$ where S is a C^{ω} function.

The spectral counting function
Remark For a compact manifold,

$$
N_{p p}(\lambda)=\operatorname{Tr} \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right) .
$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda>0$. However, as $\tau \rightarrow \infty$,
$\operatorname{Tr}\left[\mathbf{1}\left(y \leqslant e^{\tau}\right) \mathbf{1}\left(-\Delta \leqslant d^{2} / 4+\lambda^{2}\right)\right]=\kappa \tau \frac{\lambda}{\pi}+\left[N_{p p}(\lambda)-S(\lambda)+C\right]+o(1)$
where S is a C^{ω} function. It is hence natural to define

$$
N(\lambda):=N_{p p}(\lambda)-S(\lambda)+C .
$$

S is the scattering phase, and it appears in the description of the projection on the subspace of $L^{2}(M)$ corresponding to the continuous spectrum.

Theorem[CdV 83, Müller, 86] We have the equivalent

$$
N(\lambda) \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1}
$$

Theorem[CdV 83, Müller, 86] We have the equivalent

$$
N(\lambda) \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1}
$$

Recall
Theorem[Levitan, Ivrii, Bérard, ...] If M is a compact manifold,

$$
N(\lambda)=\frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1}+R(\lambda)
$$

where

1. $R(\lambda)=\mathcal{O}\left(\lambda^{d}\right)$.
2. If \mid per $\mid=0, R(\lambda)=o\left(\lambda^{d}\right)$.
3. If $K \leqslant 0, R(\lambda)=\mathcal{O}\left(\lambda^{d} / \log \lambda\right)$.

Theorem[CdV 83, Müller, 86] We have the equivalent

$$
N(\lambda) \sim \frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1}
$$

We have
Theorem If M is a manifold with cusps,

$$
N(\lambda)=\frac{\operatorname{vol}\left(B^{*} M\right)}{(2 \pi)^{d+1}} \lambda^{d+1}-\frac{\kappa}{\pi} \lambda \log \lambda+\frac{\kappa(1-\log 2)}{\pi} \lambda+R(\lambda),
$$

where

1. $R(\lambda)=\mathcal{O}\left(\lambda^{d}\right)$.
2. If \mid per $\mid=0, R(\lambda)=o\left(\lambda^{d}\right)$.
3. If $K \leqslant 0, R(\lambda)=\mathcal{O}\left(\lambda^{d} / \log \lambda\right)$.

The terms in red only contribute when $d=1$. Parnovski [95] 1. and 2 . when $d=1$; Selberg 3 . when $d=1$ and $K=-1$.

The resonances

The resonances are a discrete set of points in $\{\Re s<d / 2\}$. They are (by definition) the poles of the meromorphic continuation of $\phi(d / 2+i \lambda)=e^{2 i \pi S(\lambda)}$.

The resonances

The resonances are a discrete set of points in $\{\Re s<d / 2\}$.
They are (by definition) the poles of the meromorphic continuation of $\phi(d / 2+i \lambda)=e^{2 i \pi S(\lambda)}$.
They satisfy:

$$
-S^{\prime}(\lambda)=Q(\lambda)+\frac{1}{2 \pi} \sum_{\rho \text { resonance }} \frac{d-2 \Re \rho}{|\rho-(d / 2+i \lambda)|^{2}},
$$

where Q is a polynomial of order at most $2\lfloor d / 2\rfloor$.

The resonances
The resonances are a discrete set of points in $\{\Re s<d / 2\}$.
They are (by definition) the poles of the meromorphic continuation of $\phi(d / 2+i \lambda)=e^{2 i \pi S(\lambda)}$.
They satisfy:

$$
-S^{\prime}(\lambda)=Q(\lambda)+\frac{1}{2 \pi} \sum_{\rho \text { resonance }} \frac{d-2 \Re \rho}{|\rho-(d / 2+i \lambda)|^{2}},
$$

where Q is a polynomial of order at most $2\lfloor d / 2\rfloor$.
Each resonance ρ contributes by a Cauchy distribution centered at $\Im \rho$, and with width $d-2 \Re \rho$.
$\Longrightarrow-S$ is related to the counting function of the resonances.

First result for counting resonances
Theorem Assume $d \geqslant 2$. Then,

$$
\#\{s \text { resonance }||s-d / 2| \leqslant \lambda\}=-2 S(\lambda)+R(\lambda),
$$

where

1. $R(\lambda)=\mathcal{O}\left(\lambda^{d}\right)$.
2. If $|\operatorname{per}|=0, R(\lambda)=o\left(\lambda^{d}\right)$.

Remark. When $d=1$, we only have $R(\lambda)=\mathcal{O}\left(\lambda^{3 / 2}\right)$.

Second result on counting of resonances.
Theorem Let $\left(M, g_{0}\right)$ be a manifold with cusps of constant curvature. Then for any metric g on M, sufficiently C^{2}-close to g_{0}, the following holds.
There exists $-\infty<\delta(g)<d / 2$ such that

1. $\#\{\rho$ resonance $|\Re \rho<\delta(g),|\rho-d / 2| \leqslant \lambda\}=\mathcal{O}(\lambda)$.
2. Let $B=\{\rho$ resonance $\mid \Re \rho>\delta(g)\}$. Then

$$
\begin{gather*}
\sum_{\rho \in B,|\Im \rho \rho| \leqslant \lambda} d-2 \Re \rho=\frac{\kappa}{\pi} \lambda \log \lambda+C^{\prime} \lambda+\mathcal{O}(\log \lambda), \tag{VM}\\
\#\{\rho \in B,|\Im \rho| \leqslant \lambda\}=-2 S(\lambda)+\frac{\ell_{*}}{\pi} \lambda+\mathcal{O}\left(\frac{\lambda^{d}}{\log \lambda}\right) .
\end{gather*}
$$

Remark. (VM) generalizes the Von Mangoldt formula. The constant ℓ_{*} has a geometric interpretation in terms of length of scattered geodesics.
$\psi \in \mathcal{S}(\mathbb{R})$, even and real

$$
0-\operatorname{Tr} \psi\left(\sqrt{-\Delta-d^{2} / 4}\right)=\int_{\mathbb{R}} \hat{\psi}(t) 0-\operatorname{Tr} \cos t \sqrt{-\Delta-d^{2} / 4} d t
$$

Kernel of $\cos t \sqrt{-\Delta-d^{2} / 4}$:
$K\left(x, x^{\prime}, t\right) \sim C_{0} \sum_{k \geqslant 0}(-1 / 2)^{k} u_{k}\left(x, x^{\prime}\right) \sinh |t| \frac{\left(\cosh \left(d\left(x, x^{\prime}\right)\right)-\cosh t\right)^{k-d / 2-1}}{\Gamma(k-d / 2)}$

