Weyl Laws for manifolds with cusps.

Some theorems funded by Université d'Orsay and CRM (Montréal).



What is a manifold with cusps ?

0 e RY/A

: Exact hyperbolic cusp
VOI(M) < O . g= dy?+do?

. - 2
(M, g) is complete. K — _31’
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The free 1 body stationary problem: find solutions to the equation
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Problem: How many solutions are there to (*) with £ < A%, on a cusp
manifold 7
Why cusp manifolds ?
» If (M, g) is a compact riemannian (d + 1)-manifold, we have the
Weyl law:

vol(B*M) | 4.1

#{ solutions with £ < A%} ~ @

The right hand side still makes sense

» On a non-compact manifold, in general, counting estimates for
solutions of () involve the dimension of the trapped set. Cusp
manifold are special since the trapped set has full dimension.

» Hyperbolic cusps are simple models of finite volume ends.

» They appear in other contexts (Arithmetics — recall the Riemann
zeta function, geometry of the Teichmiiller space).
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and o,4c = [d?*/4, + .
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Let

Npp(A) = #{pi | s < d2/4 + )‘2}’
Theorem[Colin de Verdiere, 83] N,, is a constant for generic smooth
metrics.
= Counting L? solutions to (*) may not be very interesting.

But there is a continuum of non-L? solutions to (%) ! How do we count

the continuous spectrum ?
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The spectral counting function
Remark For a compact manifold,
Npp(A) = Tr1(=A < d?/4 + 2?).

For a manifold with cusps, this trace is +00 for A > 0. However, as
T — 00,

Tr[l(y < e)1(-A < d*/4+ N\?)] = m’é + [Npp()\) —S(\)+ C’] +o(1)
™
where S is a C% function. It is hence natural to define
N(A) := Npp(A) = S(\) + C.

S is the scattering phase, and it appears in the description of the
projection on the subspace of L?(M) corresponding to the continuous
spectrum.
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Theorem|Levitan, lvrii, Bérard, ---] If M is a compact manifold,

vol(B* M)

N(A) = (2m)d+1
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Theorem[CdV 83, Miiller, 86] We have the equivalent

vol(B*M) \ 41

N(M) ~
() (2m)d+1
We have
Theorem If M is a manifold with cusps,
vol(B*M) , K k(1 —log2)
N = ——— A1 _ZAlog A+ —————2" A\ 4+ R(\
» (2mr)d+1 aOBAT T + R,

where

L. R(\) = 0(0\9).

2. If |per| =0, R(A\) = o(\9).

3. If K <0, R(\) = O(\/log ).
The terms in red only contribute when d = 1. Parnovski [95] 1. and 2.
when d = 1 ; Selberg 3. when d =1 and K = —1.
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The resonances

The resonances are a discrete set of points in {fs < d/2}.

They are (by definition) the poles of the meromorphic continuation of
H(d/2 +iX) = 2SN

They satisfy:

1 d—2Rp
=S (\) =Q\) + o— T T N
2 ) resc%lance lp— (d/2 +iN\)|?
where @ is a polynomial of order at most 2|d/2].
Each resonance p contributes by a Cauchy distribution centered at Sp,
and with width d — 2Rp.
== —S is related to the counting function of the resonances.



First result for counting resonances
Theorem Assume d > 2. Then,
#{s resonance | |s — d/2] < A} = —25(\) + R(\),

where
1. R(\) = O(\9).
2. If [per| =0, R(\) = o(\9).
Remark. When d = 1, we only have R()\) = O()\*/?).



Second result on counting of resonances.

Theorem Let (M, gog) be a manifold with cusps of constant curvature.
Then for any metric g on M, sufficiently C?-close to go, the following
holds.
There exists —o0 < 0(g) < d/2 such that

1. #{p resonance | Rp < d(g), |p —d/2] < A} = O(N).

2. Let B = {p resonance | %p > 6(g)}. Then

N d—2Rp = Chlogh+ C'A+O(og)), (VM)
s

PEB, |Sp|<A

Ly A4
I _ ol
#{pe B, |Sp| < \} 25(\) + 7T>\+O(log)\>'

Remark. (VM) generalizes the Von Mangoldt formula. The constant /.
has a geometric interpretation in terms of length of scattered geodesics.






1 € S(R), even and real

0-Trep(n/—A — d2/4) = fR U (t) 0-Trcos ty/—A — d2 /Adt



Kernel of costy/—A — d?/4:

(cosh(d(z, x")) — cosh t)k—4/2—1

K(z,2',t) ~ Cy Z (—=1/2)*uy,(x, ") sinh |t]

=5 Tk —d/2)



