
Weyl Laws for manifolds with cusps.

Some theorems funded by Université d’Orsay and CRM (Montréal).



What is a manifold with cusps ?

Z1

Zκ

L “ log y

e´L

θ P Rd{Λ

y

g “ dy2`dθ2

y2
volpMq ă 8

pM, gq is complete. K “ ´1

M

Exact hyperbolic cusp



The free 1 body stationary problem: find solutions to the equation

´∆u “ Eu. (˚)

Problem: How many solutions are there to (˚) with E ď λ2, on a cusp
manifold ?
Why cusp manifolds ?

§ If pM, gq is a compact riemannian pd` 1q-manifold, we have the
Weyl law:

#t solutions with E ď λ2u „
volpB˚Mq

p2πqd`1
λd`1.

The right hand side still makes sense

§ On a non-compact manifold, in general, counting estimates for
solutions of (˚) involve the dimension of the trapped set. Cusp
manifold are special since the trapped set has full dimension.

§ Hyperbolic cusps are simple models of finite volume ends.

§ They appear in other contexts (Arithmetics — recall the Riemann
zeta function, geometry of the Teichmüller space).
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What should one count ?

The spectrum of ´∆ on L2pMq splits into σpp “ tµ0 “ 0 ă µ1 ă . . . u
and σac “ rd

2{4,`8r.
0 d2{4

σac

µ0 µk

Let
Npppλq “ #tµi | µi ď d2{4` λ2u.

Theorem[Colin de Verdière, 83] Npp is a constant for generic smooth
metrics.
ùñ Counting L2 solutions to (˚) may not be very interesting.
But there is a continuum of non-L2 solutions to (˚) ! How do we count
the continuous spectrum ?
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The spectral counting function

Remark For a compact manifold,

Npppλq “ Tr1p´∆ ď d2{4` λ2q.

For a manifold with cusps, this trace is `8 for λ ą 0. However, as
τ Ñ8,

Tr
“

1py ď eτ q1p´∆ ď d2{4` λ2q
‰

“ κτ
λ

π
`

”

Npppλq´Spλq`C
ı

`op1q

where S is a Cω function. It is hence natural to define

Npλq :“ Npppλq ´ Spλq ` C.

S is the scattering phase, and it appears in the description of the
projection on the subspace of L2pMq corresponding to the continuous
spectrum.
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Theorem[CdV 83, Müller, 86] We have the equivalent

Npλq „
volpB˚Mq

p2πqd`1
λd`1.

Recall
Theorem[Levitan, Ivrii, Bérard, ¨ ¨ ¨ ] If M is a compact manifold,

Npλq “
volpB˚Mq

p2πqd`1
λd`1 `Rpλq,

where

1. Rpλq “ Opλdq.
2. If |per| “ 0, Rpλq “ opλdq.

3. If K ď 0, Rpλq “ Opλd{ log λq.

The terms in red only contribute when d “ 1. Parnovski [95] 1. and 2.
when d “ 1 ; Selberg 3. when d “ 1 and K “ ´1.
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κ

π
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κp1´ log 2q

π
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The resonances

The resonances are a discrete set of points in t<s ă d{2u.
They are (by definition) the poles of the meromorphic continuation of
φpd{2` iλq “ e2iπSpλq.

They satisfy:

´S1pλq “ Qpλq `
1

2π

ÿ

ρ resonance

d´ 2<ρ
|ρ´ pd{2` iλq|2

,

where Q is a polynomial of order at most 2td{2u.
Each resonance ρ contributes by a Cauchy distribution centered at =ρ,
and with width d´ 2<ρ.
ùñ ´S is related to the counting function of the resonances.



The resonances

The resonances are a discrete set of points in t<s ă d{2u.
They are (by definition) the poles of the meromorphic continuation of
φpd{2` iλq “ e2iπSpλq.
They satisfy:

´S1pλq “ Qpλq `
1

2π

ÿ

ρ resonance

d´ 2<ρ
|ρ´ pd{2` iλq|2

,

where Q is a polynomial of order at most 2td{2u.

Each resonance ρ contributes by a Cauchy distribution centered at =ρ,
and with width d´ 2<ρ.
ùñ ´S is related to the counting function of the resonances.



The resonances

The resonances are a discrete set of points in t<s ă d{2u.
They are (by definition) the poles of the meromorphic continuation of
φpd{2` iλq “ e2iπSpλq.
They satisfy:

´S1pλq “ Qpλq `
1

2π

ÿ

ρ resonance

d´ 2<ρ
|ρ´ pd{2` iλq|2

,

where Q is a polynomial of order at most 2td{2u.
Each resonance ρ contributes by a Cauchy distribution centered at =ρ,
and with width d´ 2<ρ.
ùñ ´S is related to the counting function of the resonances.



First result for counting resonances

Theorem Assume d ě 2. Then,

#ts resonance | |s´ d{2| ď λu “ ´2Spλq `Rpλq,

where

1. Rpλq “ Opλdq.
2. If |per| “ 0, Rpλq “ opλdq.

Remark. When d “ 1, we only have Rpλq “ Opλ3{2q.



Second result on counting of resonances.

Theorem Let pM, g0q be a manifold with cusps of constant curvature.
Then for any metric g on M , sufficiently C2-close to g0, the following
holds.
There exists ´8 ă δpgq ă d{2 such that

1. #tρ resonance | <ρ ă δpgq, |ρ´ d{2| ď λu “ Opλq.
2. Let B “ tρ resonance | <ρ ą δpgqu. Then

ÿ

ρPB, |=ρ|ďλ

d´ 2<ρ “ κ

π
λ log λ` C 1λ`Oplog λq, (VM)

#tρ P B, |=ρ| ď λu “ ´2Spλq `
`˚
π
λ`O

ˆ

λd

log λ

˙

.

Remark. (VM) generalizes the Von Mangoldt formula. The constant `˚
has a geometric interpretation in terms of length of scattered geodesics.





ψ P SpRq, even and real

0-Trψp
a

´∆´ d2{4q “

ż

R
ψ̂ptq 0-Tr cos t

a

´∆´ d2{4dt



Kernel of cos t
a

´∆´ d2{4:

Kpx, x1, tq „ C0

ÿ

kě0

p´1{2qkukpx, x
1q sinh |t|

pcoshpdpx, x1qq ´ cosh tqk´d{2´1

Γpk ´ d{2q


