Weyl Laws for manifolds with cusps.

Some theorems funded by Université d'Orsay and CRM (Montréal).

What is a manifold with cusps ?

$$-\Delta u = Eu. \tag{(*)}$$

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E \leq \lambda^2$, on a cusp manifold ?

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E\leqslant\lambda^2$, on a cusp manifold ? Why cusp manifolds ?

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E \leq \lambda^2$, on a cusp manifold ?

Why cusp manifolds ?

• If (M,g) is a compact riemannian (d+1)-manifold, we have the Weyl law:

#{ solutions with
$$E \leq \lambda^2$$
} ~ $\frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}}\lambda^{d+1}$.

The right hand side still makes sense

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E \leq \lambda^2$, on a cusp manifold ?

Why cusp manifolds ?

• If (M,g) is a compact riemannian (d+1)-manifold, we have the Weyl law:

#{ solutions with
$$E \leq \lambda^2$$
} ~ $\frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}}\lambda^{d+1}$.

The right hand side still makes sense

On a non-compact manifold, in general, counting estimates for solutions of (*) involve the dimension of the trapped set. Cusp manifold are special since the *trapped* set has full dimension.

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E \leq \lambda^2$, on a cusp manifold ?

Why cusp manifolds ?

• If (M,g) is a compact riemannian (d+1)-manifold, we have the Weyl law:

#{ solutions with
$$E \leq \lambda^2$$
} ~ $\frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}}\lambda^{d+1}$.

The right hand side still makes sense

- On a non-compact manifold, in general, counting estimates for solutions of (*) involve the dimension of the trapped set. Cusp manifold are special since the *trapped* set has full dimension.
- Hyperbolic cusps are simple models of finite volume ends.

$$-\Delta u = Eu. \tag{(*)}$$

Problem: How many solutions are there to (*) with $E \leq \lambda^2$, on a cusp manifold ?

Why cusp manifolds ?

• If (M,g) is a compact riemannian (d+1)-manifold, we have the Weyl law:

#{ solutions with
$$E \leq \lambda^2$$
} ~ $\frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}}\lambda^{d+1}$.

The right hand side still makes sense

- On a non-compact manifold, in general, counting estimates for solutions of (*) involve the dimension of the trapped set. Cusp manifold are special since the *trapped* set has full dimension.
- Hyperbolic cusps are simple models of finite volume ends.
- They appear in other contexts (Arithmetics recall the Riemann zeta function, geometry of the Teichmüller space).

Let

$$N_{pp}(\lambda) = \#\{\mu_i \mid \mu_i \leq d^2/4 + \lambda^2\}.$$

$$N_{pp}(\lambda) = \#\{\mu_i \mid \mu_i \leq d^2/4 + \lambda^2\}.$$

Theorem[Colin de Verdière, 83] N_{pp} is a constant for generic smooth metrics.

 \implies Counting L^2 solutions to (*) may not be very interesting.

$$N_{pp}(\lambda) = \#\{\mu_i \mid \mu_i \leq d^2/4 + \lambda^2\}.$$

Theorem[Colin de Verdière, 83] N_{pp} is a constant for generic smooth metrics.

 \implies Counting L^2 solutions to (*) may not be very interesting. But there is a continuum of non- L^2 solutions to (*) ! How do we count the continuous spectrum ?

Remark For a compact manifold,

$$N_{pp}(\lambda) = \operatorname{Tr} \mathbf{1}(-\Delta \leq d^2/4 + \lambda^2).$$

Remark For a compact manifold,

$$N_{pp}(\lambda) = \operatorname{Tr} \mathbf{1}(-\Delta \leq d^2/4 + \lambda^2).$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda > 0$.

Remark For a compact manifold,

$$N_{pp}(\lambda) = \operatorname{Tr} \mathbf{1}(-\Delta \leq d^2/4 + \lambda^2).$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda>0.$ However, as $\tau\to\infty,$

$$\operatorname{Tr}\left[\mathbf{1}(y \leqslant e^{\tau})\mathbf{1}(-\Delta \leqslant d^2/4 + \lambda^2)\right] = \kappa \tau \frac{\lambda}{\pi} + \left[N_{pp}(\lambda) - S(\lambda) + C\right] + o(1)$$

where S is a C^ω function.

Remark For a compact manifold,

$$N_{pp}(\lambda) = \operatorname{Tr} \mathbf{1}(-\Delta \leq d^2/4 + \lambda^2).$$

For a manifold with cusps, this trace is $+\infty$ for $\lambda>0.$ However, as $\tau\to\infty,$

$$\operatorname{Tr}\left[\mathbf{1}(y \leqslant e^{\tau})\mathbf{1}(-\Delta \leqslant d^2/4 + \lambda^2)\right] = \kappa \tau \frac{\lambda}{\pi} + \left[N_{pp}(\lambda) - S(\lambda) + C\right] + o(1)$$

where S is a C^ω function. It is hence natural to define

$$N(\lambda) := N_{pp}(\lambda) - S(\lambda) + C.$$

S is the scattering phase, and it appears in the description of the projection on the subspace of $L^2(M)$ corresponding to the continuous spectrum.

Theorem[CdV 83, Müller, 86] We have the equivalent

$$N(\lambda) \sim \frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}} \lambda^{d+1}.$$

Theorem[CdV 83, Müller, 86] We have the equivalent

$$N(\lambda) \sim \frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}} \lambda^{d+1}.$$

Recall

Theorem[Levitan, Ivrii, Bérard, \cdots] If M is a compact manifold,

$$N(\lambda) = \frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}} \lambda^{d+1} + R(\lambda),$$

where

1.
$$R(\lambda) = \mathcal{O}(\lambda^d)$$
.
2. If $|per| = 0$, $R(\lambda) = o(\lambda^d)$.
3. If $K \leq 0$, $R(\lambda) = \mathcal{O}(\lambda^d/\log \lambda)$

Theorem[CdV 83, Müller, 86] We have the equivalent

$$N(\lambda) \sim \frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}} \lambda^{d+1}.$$

We have

Theorem If M is a manifold with cusps,

$$N(\lambda) = \frac{\operatorname{vol}(B^*M)}{(2\pi)^{d+1}} \lambda^{d+1} - \frac{\kappa}{\pi} \lambda \log \lambda + \frac{\kappa(1 - \log 2)}{\pi} \lambda + R(\lambda),$$

where

1. $R(\lambda) = \mathcal{O}(\lambda^d).$

2. If
$$|per| = 0$$
, $R(\lambda) = o(\lambda^d)$.

3. If $K \leq 0$, $R(\lambda) = \mathcal{O}(\lambda^d / \log \lambda)$.

The terms in red only contribute when d = 1. Parnovski [95] 1. and 2. when d = 1; Selberg 3. when d = 1 and K = -1.

The resonances

The resonances are a discrete set of points in $\{\Re s < d/2\}$. They are (by definition) the poles of the meromorphic continuation of $\phi(d/2 + i\lambda) = e^{2i\pi S(\lambda)}$.

The resonances

The resonances are a discrete set of points in $\{\Re s < d/2\}$. They are (by definition) the poles of the meromorphic continuation of $\phi(d/2 + i\lambda) = e^{2i\pi S(\lambda)}$. They satisfy:

$$-S'(\lambda) = Q(\lambda) + \frac{1}{2\pi} \sum_{\rho \text{ resonance}} \frac{d - 2\Re\rho}{|\rho - (d/2 + i\lambda)|^2},$$

where Q is a polynomial of order at most $2\lfloor d/2 \rfloor$.

The resonances

The resonances are a discrete set of points in $\{\Re s < d/2\}$. They are (by definition) the poles of the meromorphic continuation of $\phi(d/2 + i\lambda) = e^{2i\pi S(\lambda)}$. They satisfy:

$$-S'(\lambda) = Q(\lambda) + \frac{1}{2\pi} \sum_{\rho \text{ resonance}} \frac{d - 2\Re\rho}{|\rho - (d/2 + i\lambda)|^2},$$

where Q is a polynomial of order at most $2\lfloor d/2 \rfloor$. Each resonance ρ contributes by a Cauchy distribution centered at $\Im \rho$, and with width $d - 2\Re \rho$.

 $\Longrightarrow -S$ is related to the counting function of the resonances.

First result for counting resonances

Theorem Assume $d \ge 2$. Then,

$$\#\{s \text{ resonance } \mid |s - d/2| \leq \lambda\} = -2S(\lambda) + R(\lambda),$$

where

1.
$$R(\lambda) = \mathcal{O}(\lambda^d)$$
.
2. If $|per| = 0$, $R(\lambda) = o(\lambda^d)$

Remark. When d = 1, we only have $R(\lambda) = \mathcal{O}(\lambda^{3/2})$.

•

Second result on counting of resonances.

Theorem Let (M, g_0) be a manifold with cusps of constant curvature. Then for any metric g on M, sufficiently C^2 -close to g_0 , the following holds.

There exists $-\infty < \delta(g) < d/2$ such that

- 1. #{ ρ resonance | $\Re \rho < \delta(g)$, $|\rho d/2| \leq \lambda$ } = $\mathcal{O}(\lambda)$.
- 2. Let $B = \{\rho \text{ resonance } | \Re \rho > \delta(g)\}$. Then

$$\sum_{\rho \in B, \ |\Im\rho| \leqslant \lambda} d - 2\Re\rho = \frac{\kappa}{\pi} \lambda \log \lambda + C'\lambda + \mathcal{O}(\log \lambda), \qquad (VM)$$
$$\#\{\rho \in B, \ |\Im\rho| \leqslant \lambda\} = -2S(\lambda) + \frac{\ell_*}{\pi} \lambda + \mathcal{O}\left(\frac{\lambda^d}{\log \lambda}\right).$$

Remark. (VM) generalizes the Von Mangoldt formula. The constant ℓ_* has a geometric interpretation in terms of length of scattered geodesics.

 $\psi \in \mathcal{S}(\mathbb{R})$, even and real

$$0-\operatorname{Tr}\psi(\sqrt{-\Delta-d^2/4}) = \int_{\mathbb{R}} \hat{\psi}(t) \, 0-\operatorname{Tr}\cos t\sqrt{-\Delta-d^2/4}dt$$

Kernel of $\cos t \sqrt{-\Delta - d^2/4}$:

$$K(x, x', t) \sim C_0 \sum_{k \ge 0} (-1/2)^k u_k(x, x') \sinh |t| \frac{(\cosh(d(x, x')) - \cosh t)^{k-d/2-1}}{\Gamma(k - d/2)}$$